
Florida International University

FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

2-28-2011

Secure Information Flow via Stripping and Fast
Simulation
Rafael H. Alpizar
Florida International University, rhAlpizar@ymail.com

DOI: 10.25148/etd.FI11042705
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in

FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Alpizar, Rafael H., "Secure Information Flow via Stripping and Fast Simulation" (2011). FIU Electronic Theses and Dissertations. 366.
https://digitalcommons.fiu.edu/etd/366

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

SECURE INFORMATION FLOW VIA STRIPPING AND FAST SIMULATION

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Rafael Alṕızar

2011

To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Rafael Alṕızar, and entitled Secure Information Flow
via Stripping and Fast Simulation, having been approved in respect to style and
intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Dev Roy

Peter Clarke

Jinpeng Wei

Geoffrey Smith, Major Professor

Date of Defense: February 28, 2011

The dissertation of Rafael Alṕızar is approved.

Dean Amir Mirmiran

College of Engineering and Computing

Interim Dean Kevin O’Shea

University Graduate School

Florida International University, 2011

ii

c© Copyright 2011 by Rafael Alṕızar

All rights reserved.

iii

DEDICATION

To Marla, the love of my life, and to my children: Sofia, Leila, and Ariadna.

iv

ACKNOWLEDGMENTS

I am grateful to my advisor and mentor, Geoffrey Smith, for guiding me though

my most significant learning experience, showing me the wonders of theoretical

computer science, and teaching me about life, integrity, and wisdom. I am also

thankful to the members of my dissertation committee Peter Clarke, Dev Roy, and

Jinpeng Wei for their many suggestions, advice, and diligence. This work was

partially supported by the National Science Foundation under grants HRD-0317692

and CNS-0831114.

v

ABSTRACT OF THE DISSERTATION

SECURE INFORMATION FLOW VIA STRIPPING AND FAST SIMULATION

by

Rafael Alṕızar

Florida International University, 2011

Miami, Florida

Professor Geoffrey Smith, Major Professor

Type systems for secure information flow aim to prevent a program from leaking

information from H (high) to L (low) variables. Traditionally, bisimulation has been

the prevalent technique for proving the soundness of such systems. This work intro-

duces a new proof technique based on stripping and fast simulation, and shows that

it can be applied in a number of cases where bisimulation fails. We present a progres-

sive development of this technique over a representative sample of languages includ-

ing a simple imperative language (core theory), a multiprocessing nondeterministic

language, a probabilistic language, and a language with cryptographic primitives.

In the core theory we illustrate the key concepts of this technique in a basic

setting. A fast low simulation in the context of transition systems is a binary relation

where simulating states can match the moves of simulated states while maintaining

the equivalence of low variables; stripping is a function that removes high commands

from programs. We show that we can prove secure information flow by arguing that

the stripping relation is a fast low simulation.

We then extend the core theory to an abstract distributed language under a

nondeterministic scheduler. Next, we extend to a probabilistic language with a

random assignment command; we generalize fast simulation to the setting of discrete

time Markov Chains, and prove approximate probabilistic noninterference. Finally,

we introduce cryptographic primitives into the probabilistic language and prove

vi

computational noninterference, provided that the underling encryption scheme is

secure.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION. 1
1.1 Motivation . 3
1.2 Problem Description and Contribution 4

2. BACKGROUND AND RELATED WORK. 8
2.1 Type Systems and Secure Information Flow 8
2.2 Related Work . 15

3. STRIPPING AND FAST SIMULATION ON THE CORE LANGUAGE. . 20
3.1 Imperative Language Semantics . 20
3.2 Core Language Type System . 25
3.3 Fast Simulation for Transition Systems 35
3.4 Stripping and Fast Low Simulation . 38
3.5 Noninterference of Well-Typed Programs 42

4. SECURE INFORMATION FLOW FOR DISTRIBUTED SYSTEMS. . . 51
4.1 An Abstract Language for Distributed Systems 52
4.2 Observational Determinism for Nondeterministic Systems 59
4.3 Noninterference of Abstract Distributed Systems 61
4.4 Towards a Concrete Implementation . 71

5. PROBABILISTIC SIMULATION AND NONTERMINATION. 77
5.1 A Probabilistic Language . 82
5.2 Probabilistic Simulation for Transition Systems 86
5.3 The Stripping Relation in a Probabilistic Setting 98
5.4 Fast Low Probabilistic Simulation . 100
5.5 Applications . 105

6. SECURE INFORMATION FLOW WITH ENCRYPTION. 108
6.1 Elements of Cryptographic Security . 117
6.2 A Language With Encryption . 121
6.3 A Language With Encryption and Decryption 130

7. CONCLUSION AND FUTURE WORK. 133

NOMENCLATURE . 138

BIBLIOGRAPHY . 144

VITA . 152

viii

LIST OF FIGURES

FIGURE PAGE

3.1 Core Language Syntax . 20

3.2 Core Language Semantics . 22

3.3 Core Language Type System . 26

3.4 Graphical representation of fast simulation 36

3.5 Graphical representation of fast low simulation 43

3.6 Noninterference of terminating executions 49

4.1 Distributed Attacks . 52

4.2 Distributed Attacks (nondeterministic) 54

4.3 Abstract language syntax . 55

4.4 Abstract language semantics . 57

4.5 Abstract language type system . 58

4.6 A difficult example for low bisimulation 62

4.7 Stripped version of Figure 4.6 . 62

4.8 Graphical representation of fast low Simulation 65

4.9 Noninterference of distributed systems 70

4.10 Attacks (second wave) . 72

4.11 Attacks (third wave) . 74

5.1 A random assignment program . 79

5.2 Stripped version of the program . 80

5.3 Probabilistic language syntax . 82

5.4 Probabilistic semantics . 84

5.5 Probabilistic language type system . 85

5.6 Fast Probabilistic Simulation . 89

5.7 An example Markov chain . 90

ix

5.8 Another example Markov chain . 96

5.9 Simple Fast Probabilistic Simulation . 97

6.1 Probabilistic language syntax . 112

6.2 Structural Operational Semantics . 113

6.3 Probabilistic Typing Rules . 114

x

CHAPTER 1

INTRODUCTION.

In the Summer of 2005 Geoffrey Smith, at the request of his doctoral students,

taught a graduate seminar in cryptography. It was a wonderful seminar which im-

mersed all of us in the area and out of which many ideas were generated; some of

the ideas became the basis for [SA06]. In this paper we designed a language and

type system for secure information flow which contained cryptographic primitives.

In type systems for secure information flow, variables are assigned a security classi-

fication, e.g., high or low (H or L); then, the language semantics and typing rules

ensure that the execution of well-typed programs is unable to leak information to

variables with lower or incomparable security classification. However, the paper had

a known weakness; it was missing the proof of a theorem that was used in the general

soundness proof. We sketched the proof and assured our audience of its validity.

It was fairly clear that the theorem was sound but the existing proof techniques

were not useful. We had to look elsewhere and found the work of Baier, Katoen,

Hermanns, and Wolf [BKHW05] on strong and weak simulation on Markov Chains

which could be adapted to model the execution of probabilistic programs and might

provide us with the needed proof technique. Strong simulation turned out to be too

restrictive for us and while weak simulation could be used in the nondeterministic

setting, it was not useful for the probabilistic setting. So we adapted this work to

develop fast simulation which we now describe in a basic setting.

Consider a program which computes with H and L data. Suppose that there is

a “stripping” function that can remove all the high commands from the program, so

that the stripped program is limited to computing with low data. It turned out that

if the stripped version of a program could simulate the execution of the original

1

one, up to the final values of low variables, it meant that the original program could

not leak high information.

Now, the precise formulation of simulation was critical; it could not be too

restrictive (strong simulation) since that would require a lock-step execution. It

could not be too loose; it would have to be faster (or at least as fast) as the original

program for otherwise the simulation could loop forever and we did not want that.

So, we defined fast simulation and published [SA07]. A next obvious step was

to expand our language into a multiprocessing system; there is significant work on

multithreaded systems in the literature but most have severe typing restrictions on

the language (typically, loop guards were restricted to be low) and we wanted a

more expressive language. This in turn produced many problems that had to be

resolved by typing and semantic rules; in the end we developed an abstract language

for distributed program [AS09].

A contribution of [AS09] (over [SA07]) was a refined stripping function ⌊·⌋ that

aggressively removed high computation without a trace; the previous version of the

stripping function replaced secret computation with a no-op command skip (which

took a step to execute). Also we introduced the concept of an empty command

done to indicate a terminated execution. These changes greatly simplified the

language analysis producing much simpler and more elegant theorems and proofs.

For example, while before, the simulation relation RL allowed a program to be

simulated by many programs, including its stripped version, now the stripped version

was the only simulation of the original one.

The concept of fast simulation is subtle and perhaps difficult to grasp, but it has

been essential to prove the soundness of two of our languages (a probabilistic and a

nondeterministic language). So in this work we present a comprehensive treatment

2

of the theory that can be used as a good reference to researchers in this area in need

of proof techniques and we apply the technique to a variety of languages.

1.1 Motivation

On confidentiality and trust. On any given day, information with varying levels

of confidentiality flows back and forth throughout the world’s computing systems.

Whether you are doing a backup of medical records to an electronic vault in Col-

orado, using a credit card to purchase a book on Amazon, or reviewing the latest

collider experiment at CERN from your office at FIU, the world computing systems

exchange enormous amounts of confidential data. The assurance that confidential

data remain so, is a daunting and perhaps unattainable goal.

At different levels of technical expertise, people perform different leaps of faith to

reassure themselves about the confidentiality and integrity of data. The picture of a

small lock on the lower right side of the screen is able to induce far more trust on the

average user than volumes of security policies and communication protocols. Yet,

while suggestive icons may carry more weight on certain audiences, there is never

complete assurance of confidentiality or integrity. At the highest levels of formality,

mathematicians and computer scientists face similar problems. While a proof of

soundness is the definite statement about a model (if it has no mistakes), the model

itself may not be adequate; as the abstraction approaches reality, the complexity of

the model increases and its soundness proof becomes more intractable.

At the operational level technical managers agree on vast security policies and

protocols so systems can share information. The correctness of such is highly ques-

tionable. A best effort trust is the best we currently have and such trust is based

more on the perceived integrity and openness of the community of scientists and

technologists that develop the techniques and work on the verification of the sys-

3

tems than in the actual policies and proofs that are beyond the understanding of

most.

The kernel of trust. Nevertheless, while trust is what makes the world’s systems

viable, the technical work is the kernel without which there would be nothing to

trust. An understanding of the vulnerability of systems is essential in designing

new more secure systems; while a proof of soundness of, say, a new secure language

design may still have problems at a different level of abstraction, it can still eliminate

a vast class of security problems. Therefore, we recursively strive to refine systems

to increase these security properties.

Secure information flow is motivated by the idea that information of diverse

levels of confidentiality should flow through computing systems without leaking to

lower or incomparable levels. As these are essentially sets of programs operating on

memories, this field focuses on maintaining confidentiality at specific “observational”

points during the execution of programs.

1.2 Problem Description and Contribution

In this work we wish to address the feasibility of a practical secure language. Ul-

timately, this would require an actual implementation which would be beyond the

scope of a PhD dissertation. So instead, we propose the following criteria for success:

- the work should present successful implementations of languages with features

that are representative of commercial languages; it should include at a mini-

mum: probabilistic commands, concurrency, and cryptographic primitives.

- a single theory should handle the establishment of the security properties of

all the languages.

4

- the languages should be simple and elegant, the programmer should not have

to learn complex syntax or semantics and the type system should not restrict

the programmer too unreasonably. At a minimum, the guards of if and while

commands should not be restricted.

We try to meet the criteria above. We introduce a representative set of secure lan-

guages under one framework with features that are similar to commercial languages.

In general, we see our contribution as follows:

- introduction of stripping, fast simulation, and fast low simulation as an anal-

ysis tool for soundness of languages with security policies.

- design and soundness analysis of four representative secure languages

[a] core language,

[b] abstract language for distributed systems,

[c] probabilistic language, and

[d] cryptographic language.

The stripping function has evolved over the years to what we now call aggressive

stripping. Aggressive stripping actively removes high commands from sequential

compositions. This is in contrast to the original function which replaced high com-

mands with skip. A useful detail related to this is the introduction of the terminated

command done into the standard language syntax, which yielded more elegant and

intuitive soundness proofs.

More precisely we see our contribution as follows:

- Chapter 3 contains a detailed exposure of the core theory in a basic setting,

provides easy understanding of the key concepts.

5

- Chapter 4 contains a treatment of a distributed language which is only limited

by the Denning restrictions within individual processes.

- Chapter 5 has two main contributions. First, it has a quantitative account of

information flows caused by nontermination in programs that satisfy just the

Denning restrictions; this is important for understanding more precisely what

is guaranteed in languages that allow termination channels. Second, it pro-

vides a technical contribution by introducing a new notion of simulation, fast

probabilistic simulation, and applying it to the area of secure information flow;

to our knowledge probabilistic simulation (unlike probabilistic bisimulation)

has not previously been used in secure information flow. Also, this chapter

provides a first treatment of a secure probabilistic language.

- Chapter 6: contains a first treatment of a cryptographic language within the

computational cryptographic model of [BR05].

These contributions were originally published in four publications as described be-

low.

Organization. In this work, our goal is to produce a model, a set of tools,

and a set of applications that use these tools. These, we believe, can be useful to

researchers and secure language designers to create more sophisticated and usable

secure languages. It is organized as follows. In Chapter 2 we review the background

areas upon which our theory rests and place our work within the research literature.

Chapter 3 presents the core theory of stripping and fast simulation in the context of

transition systems. The simple imperative language of [VSI96] is used to illustrate

the core techniques. Chapter 4 applies the core theory to an abstract distributed

system under a nondeterministic scheduler. This work is a revised version of our

FAST1-09 paper [AS09]. Chapter 5 further extends the core theory to a probabilistic

1Formal Aspects of Security and Trust.

6

environment. The new context is now discrete time Markov Chains. An early

version of this chapter was initially published at PLAS2-07 [SA07], but later it was

expanded to a journal article in MSCS3-10 [SA11]. We consider this chapter the

central contribution of this thesis. Chapter 6 is an application of Chapter 5 to a

cryptographic language. Paradoxically, this was the first of our papers; it was first

published in FMSE4-06. Finally, Chapter 7 presents future work and concludes.

2Programming Languages and Analysis for Security.

3Mathematical Structures in Computer Science.

4Formal Methods in Security Engineering

7

CHAPTER 2

BACKGROUND AND RELATED WORK.

In this chapter we provide a brief history of the research area with explanations

of some of its key concepts and we relate the contributions of this work to the

research literature.

2.1 Type Systems and Secure Information Flow

During the period between 1900-1902 mathematics suffered devastating challenges

from the discovery of logical paradoxes; these threatened to invalidate all mathe-

matical findings. Type systems were first devised then, to establish the soundness

of logical systems. Somewhat independently, during the 1950s, type systems began

emerging in programming languages, mostly to segregate floating point from integer

operations in FORTRAN but, as the fields of computer science and logic merged,

type system grew in sophistication and extent. Today, Benjamin Pierce [Pie02]

defines type systems as tools for reasoning about programs, or more precisely, as

tractable syntactic methods for proving the absence of certain program behaviors

by classifying phrases according to the values they compute.

Secure information flow is concerned with a class of systems that compute on

data with varying degrees of confidentiality; it intends to identify illegal flows of

confidential data to variables with lower or incomparable classifications or to provide

guarantees that such flows do not occur. The degrees of confidentiality form a

security lattice that can range from simple {H (high), L(low)} to complex lattices.

Hence, by classifying the data appropriately, the sources of programs need not be

trusted as long as they meet a secure flow certification. Secure information flow was

pioneered by Dorothy Denning in the 1970s. She introduced security classifications

8

for variables in programs and studied ways to prevent information from leaking to

variables of lower classification [Den75].

The Denning restrictions.. The seminal work in Secure Information Flow was

the Dennings’ 1977 paper [DD77], which proposed what we now call the Denning

restrictions :

• An expression is classified as H if it contains any H variables; otherwise, it is

classified as L.

• To prevent explicit flows, a H expression cannot be assigned to a L variable.

• To prevent implicit flows, an if or while command whose guard is H may not

make any assignments to L variables.

Explicit flows are direct transfers of information to lower or incomparable variables;

for example, let variable l be typed L (l : L var) and h : H var . The command l := h

does an explicit flow because it copies the value of h into a variable with a lower secu-

rity type. Implicit flows are indirect transfers of information to lower or incompara-

ble variables; e.g., if h can only be 0 or 1, the command if h then l := 1 else l := 0

copies the value of h to l without using a direct assignment; hence, the command

does an implicit flow. The languages presented in this work are only limited by the

Denning restrictions .

Noninterference. In the late 1970s Ellis Cohen defined the concept of strong

dependency [Coh77] as a measure of whether any information is transmitted on a

channel. Somewhat later, Goguen and Messeguer [GM82] defined the concept of

noninterference as: given two sets of users, what one set does (the H commands

for us) has no effect in what the other set sees as final outputs. Noninterference,

as it is currently defined, is more related to Cohen’s definition and has become the

desired property of secure languages. Since its inception, variants of noninterference

9

have emerged. The first variant was probabilistic noninterference, first proposed

by McLean and Gray [McL90, Gra90] respectively, which extended the concept to

probabilistic languages. To meet this new property, changes to the high inputs of

programs could not change the probability distributions of the low outputs. The

second variant was computational noninterference; first introduced by Backes and

Pfitzmann in [BP02], it was a significant extension of the original definition. Under

this property a program was allowed to fully leak values as long as recovering them

would require exponential time on the size of a security parameter (usually the

encryption key). The work by Sabelfeld and Myers [SM03] is a survey of secure

information flow during this period (up to 2003).

The use of type systems for secure information flow was first introduced by

Dennis Volpano, Geoffrey Smith, and Cynthia Irvine in [VSI96], to disallow leaking

behavior in well-typed programs. The paper presented a simple imperative language

with standard syntax and semantics; each variable was classified within a security

lattice which captured the desired information flow policy. The paper integrated

and clarified existing concepts of security (like confinement and subject reduction)

and established noninterference as the key property for secure information flow.

The type system now focused on the control of information flow within program

executions rather than its traditional role as enforcer of data-type compatibility;

as it was designed to enforce only the Denning restrictions, the key contribution

of the paper was a proof that implementing the Denning restrictions was sufficient

for secure information flow on the simple imperative language. Advantages of this

approach are that the Security Policy (Type System) and Information Flow Policy

(Security Lattice) can be treated separately from each other and from the language

semantics, although soundness is established with respect to the complete system.

10

Cryptography. The complexity of language and type systems for secure infor-

mation flow has increased over the years. The goal has been to provide practical

applicability to the systems. To this end in early 2000, Peeter Laud pioneered the

area of computationally-secure information-flow analysis in the presence of encryp-

tion. In his first works [Lau01], the analysis was not in the form of a type system

but later, with Varmo Vene [LV05], they develop the first language and type system

with encryption and a computational security property. Our work includes a cryp-

tographic language in this vein, which was first published as [SA06]. More recently,

Backes and Pfitzmann [BP05] establish secrecy properties for a rich Dolev-Yao-style

cryptographic library.

Quantitative Information Flow. Rather than certifying a program secure, re-

cently, there has been a great deal of work to quantify information leaks of pro-

grams that may not satisfy the Denning restrictions. Using Information Theory and

other methods, the new approach has been to measure the leakage of information

quantitatively; examples include Di Pierro, Hankin, and Wiklicky [DPHW02] and

Clark, Hunt, and Malacaria [CHM02]. Later, in work by Malacaria [Mal07], he uses

Shannon entropy to assign a quantitative measure to the amount of leakage caused

by while loops that violate the Denning restrictions, for example by assigning to a

L variable in the body of a while loop with a H guard. This work is in contrast with

the traditional approach where the focus is on proving a program segment secure.

For a general survey of recent work (up to 2005) on incorporating declassification

into secure information-flow analyses see Sabelfeld and Sands [SS05].

The use of Shannon entropy provides an effective expectation of what it would

take to guess a secret when the secrets is a uniformly distributed random variable.

However, this expectation metric is not adequate as a general measure of the vul-

nerability of programs within secure information flow. The problem, as illustrated

11

by Smith [Smi09], is that a secret may be highly guessable and yet have an arbi-

trarily high guessing entropy. To address this basic limitation, new metrics have

been proposed in the areas of anonymity protocols [THV04, SW06] and more com-

prehensively within secure information flow [Smi08, Smi09]. The new metrics use

min-entropy as a better measure of the vulnerability of a system.

Most recently, Shannon entropy and min-entropy have been applied to the prob-

lem of bounding the effectiveness of countermeasures against timing and side channel

attacks; these attacks are methods of indirectly extracting information from a cryp-

tosystem base on its physical performance and timing. For example, Kocher [Koc96]

uses timing to extract bits of an RSA encryption key. Also, side channel attacks are

very effective because they can be done remotely [BB05].

Input blinding aims to de-correlate the timing measure from the attacker’s in-

tended input by randomizing it prior to preforming decryptions. Bucketing es-

tablished discrete time intervals for the computation of cryptographic operations.

Kocher introduced input blinding [Koc96] and much later Köpf and Dürmuth in-

troduced bucketing [KD09] and used Shannon entropy to bound the leakage under

this countermeasure. Subsequently Köpf and Smith, using min-entropy, expanded

this result to address when the attacker also possesses partial information of the

cryptosystem.

Simulation and bisimulation. As detailed in [San09] bisimulation/coinduction

was first introduced by Robin Milner in a series of papers whose goal was to estab-

lish when two programs are equivalent. In [Mil71], Milner first introduced simulation

of total imperative programs and then introduced bisimulation as a symmetric sim-

ulation relation. Later [Mil82] refined the concept.

Ten years earlier Kemeny and Snell [KS60] had introduced the concept of lumpa-

bility in Markov Chains. Lumpability is a property of some Markov Chains where

12

sets of states can be lumped together thereby reducing the state space without

affecting its operations. States within the lumped sets were equivalent in some

manner.

Following on Milner’s work, Larsen and Skou [LS91] extended bisimulation to a

probabilistic setting as an equivalence relation on probabilistic transition systems.

Then, reintroducing lumpability on Markov Chains, probabilistic bisimulation was

further expanded to allow for programs that don’t quite “track” each other in lock-

step. Baier, Katoen, Hermanns, and Wolf [BKHW05] expanded this area redefining

the original concept of bisimulation to strong bisimulation, and introducing weak

bisimulation. They also introduced the concepts of strong and weak simulation.1

From our perspective we would say that bisimulation is an equivalence relation

where two transitioning systems behave indistinguishably with respect to a formal

observer. The observer may be myopic in some cases and miss certain classes of

transitions. For example in [Smi03] weak probabilistic bisimulation is established on

a concurrent language and type system where the observer is not able to notice the

time that the processes spends doing secret calculations. The effectiveness of bisim-

ulation in establishing program equivalence, we believe, deemphasized simulation

as a tool to prove noninterference on computing systems. But as we will see, there

are many languages where executions of the same program/system multiple times

are not bisimilar yet they posses a noninterference property due to an observational

inability of the adversary. Hence, simulation, combined with observational deter-

minism [ZM03], is a tool that can be used where bisimulation fails as well as instead

of it.

1The setting for this work was discrete time and continuous time Markov Chains, but
here we are only concerned with DTMC.

13

Practical secure languages. Recent work towards the creation of practical secure

information-flow languages includes Jif [MCN+06] and Aura [JVM+08]. Jif is older,

richer, fairly well introduced as a practical language but does not allow placement of

secret data on public variables except by using explicit declassification. In contrast

the extensive functional imperative language Aura maintains confidentiality and

integrity properties of its constructs as specified by its label [JVM+08] by “pack-

ing” them using asymmetric encryption before declassification. The cryptographic

layer is hidden to the programmer making it easier to use. This system uses static

and runtime checking to enforce security. Using a different approach, Zheng and

Myers [ZM08] use a purely static type system to achieve confidentiality by split-

ting secrets under the assumption of non-collusion of repositories (e.g. key and data

repositories). Under this model ciphertexts do not need to be public which allows

relaxation of the type system while maintaining security. Further towards the prac-

tical end of the spectrum are efforts to provide assurance levels to software (as in

EAL standard). In this line of work (Shaffer, Auguston, Irvine, Levin [SAIL08])

a security domain model is established and “real” programs are verified against it

to detect flow violations. Also, Askarov, Hedin, and Sabelfeld [AHSS08] explores

termination-insensitive noninterference (as guaranteed by the Denning restrictions)

in the context of a deterministic programming language with an output command.

They observe that such programs can leak an unbounded amount of information

(albeit slowly) by going into an infinite loop at some point within a sequence of

outputs.

14

2.2 Related Work

Our work encapsulates a number of contributions which we now relate to the lit-

erature. To the best of our knowledge this is the first cohesive treatment of a

representative set of languages and type systems under one framework and one

proof technique. The key concepts in this work are stripping and fast low simu-

lation. Fast low simulation is based on fast simulation on Markov Chains from

[SA07, SA11] which in turn was based on strong and weak simulation for discrete

time Markov chains by Christel Baier, Joost-Pieter Katoen, Holger Hermanns, and

Verena Wolf [BKHW05].

Stripping is somewhat reminiscent of the work of Agat [Aga00], which proposes

to eliminate external timing leaks in programs through a transformation-based ap-

proach. But our stripping operation is not an implementation technique, but rather

a thought experiment that we use to better understand the behavior of programs

under the Denning restrictions.

The theorem that stripping is a fast low simulation shows that the theory of prob-

abilistic simulation can be applied fruitfully to the secure information flow problem.

This theorem adds a more powerful proof technique to the existing bisimulation-

based approach of work like [LV05, SA06], and [FR08] on languages with cryptog-

raphy, and [AFG98, SV98, Smi03, ACF06, FC08] on multi-threaded languages. In

[AS09], the theorem was adapted from a probabilistic to a nondeterministic envi-

ronment to prove secure information flow in a distributed language.

In this work we present a variety of language and type systems and prove different

flavors of noninterference property on them using the techniques described above.

Next we place each language and key concepts within the research literature.

15

The core language is intended to provide a clear exposition of the core techniques

without having to deal with complicating issues like probabilistic or nondeterministic

program executions. The core language is the same as [VSI96] except for the done

command. However, the mechanisms to establish noninterference are now based on

simulation rather than bisimulation.

The abstract distributed language. Previous work on multithreaded languages in-

clude [AFG98, SV98, Smi03, ACF06, FC08]. In order to attain soundness, these lan-

guages have restrictive type systems which strongly curtailed the language’s expres-

sive power. For example, [Smi01] achieves probabilistic noninterference on multi-

threaded programs by requiring that a command whose running time depends on

H variables cannot be followed sequentially by an assignment to a L variable. An

exception to these is the extensive work on observational determinism in concur-

rent languages by Zdancewic and Myers [ZM03]. In this paper the authors present

a fairly rich concurrent language with message passing, memory sharing, and a re-

laxed language syntax, and prove a noninterference property with respect to a sound

race-condition detection program that rejects any program that is found to have a

race-condition. The paper separates the explicit/implicit flow leaks with the leaks

due to thread-racing and mostly addresses the first. In contrast, our language is

much simpler in its information sharing model, does not type the program counter,

and its type system prevents race-conditions for well-typed programs. Hence, we

gain intuition into a variety of information leaking mechanisms. Another language

in a similar vein is the work of Fournet and Rezk [FR08]. The language has a rich

set of cryptographic primitives and a treatment of integrity as well as confidentiality.

The primary differences between these works are that their system does not han-

dle concurrency and is subject to timing channels; on the other hand, their active

adversary is more powerful, having the ability to modify public data.

16

Our random assignment language is an enhancement of Section 3 of [SA06].

As far as we know there is no other isolated treatment of a random assignment

language in the literature. Laud and Vene’s cryptographic language [LV05] has built

in random assignment and their analysis could be done on programs that use random

assignment but not encryption. However, this would establish that such programs,

if well-typed, satisfy a computational noninterference property for polynomial-time

programs; this is weaker than the probabilistic noninterference property that we

show. Random assignment makes the language probabilistic, and hence similar to

multi-threaded languages that have been previously investigated. But because the

language is sequential, we do not have races between different threads, which greatly

complicate secure information flow analysis and require more restrictive typing rules.

The cryptographic language. The cryptographic framework we used for this lan-

guage is called the computational framework and is based on the work of Bellare and

Rogaway [BR05], However, much of the work on cryptographic protocols is based on

the Dolev-Yao model [DY83]. To relate these two, the pioneering work of Abadi and

Rogaway [AR00] proves a computational justification for Dolev-Yao-style analysis

of protocol messages under passive adversaries.

Based on [AR00], in [Lau03], Peeter Laud establishes a formal methods secu-

rity property that is equivalent to IND-CCA. Then, building on these and [BP05],

Laud [Lau05] presents a type system to ensure a computational secrecy property

for communication protocols. The system is based on a process calculus (like spi)

with a rich set of constructs for message passing, symmetric and asymmetric encryp-

tion and decryption, and key and nonce generation. The main difference with our

cryptographic language is that the type system has a major limitation: its rules for

typing conditionals, (IfH) and (IfR), do not allow branching on secret data; this may

not be a problem for a protocol language but it certainly is a major restriction for a

17

general-purpose programming language. Soon after, with Varmo Vene [LV05], they

develop the first language and type system with cryptography and a computational

security property. The main differences between [LV05] and our cryptographic lan-

guage are that their type system does not address decryption, while ours does, and

the security property of their model is equivalent to IND-CCA while we use both

IND-CCA and IND-CPA, which is a weaker security and as such is easier to im-

plement in a cryptographic scheme. On the other hand, their language is richer in

that it supports key generation (although not inside loops) while our cryptographic

language does not handle key manipulation and assumes a single, implicitly gen-

erated key for all the encryption and decryption operations; in compensation, we

are able to use a much simpler type system and soundness proof. Much later, in

[Lau08], Laud proves a computational noninterference property on a type system

derived from the work of Askarov, Hedin, and Sabelfeld [AHS06]. Another language

close to ours is by Focardi and Centenaro [FC08]. It treats a multiprogrammed

language and type system over asymmetric encryption and proves a noninterference

property on it. The main differences are that their type system is more restrictive,

requiring low guards on loops, and they use a formal methods approach rather than

computational complexity.

Recently there has been new work to relax noninterference by allowing some

leaks of information while still preserving security (in some sense). For example,

Volpano [Vol00] shows a computational justification for typing rules for one-way

hash functions; because hashing is deterministic, however, his typing rules need to

be more restrictive than the rules we use here. Another notable work is Li and

Zdancewic [LZ05], which uses downgrading policies as security levels, so that the

security level specifies what must be done to “sanitize” a piece of information.

18

More distantly related is the large body of recent work aimed at proving compu-

tational security properties of cryptographic protocols. An example is Warinschi’s

paper [War03] that proves the computational soundness of the Needham-Schroeder-

Lowe public key protocol, provided that the encryption scheme is IND-CCA se-

cure. However, it should be noted that the problem addressed by such works is

very different from the secure information-flow problem: protocol work considers

distributed systems in the presence of an active adversary, whose behavior is uncon-

strained but who does not have direct access to certain secrets; in contrast, secure

information-flow analysis considers untrusted programs that do have direct access

to secret information and that must be prevented (using typing rules, for example)

from propagating it improperly.

19

CHAPTER 3

STRIPPING AND FAST SIMULATION ON THE CORE

LANGUAGE.

In this chapter we define our core theory. Our goals are ease of understanding,

simplicity of exposure, and completeness; we use the simple imperative language of

[VSI96] to meet our goals. We first define the syntax, semantics, and type system of

the core language and argue its basic properties, then we define fast simulation in the

general context of transition systems; we define the stripping of “high computation”

from program executions; and finally, we argue a noninterference property on well-

typed programs.

Our language syntax is defined in Figure 3.1. In the syntax, metavariables x, y, z

range over identifiers and n over integer literals. Integers are the only values; we

use 0 for false and nonzero for true. A novelty of our language is that we have

replaced the usual skip command with a done command instead; done can be

used in much the same way as skip and (as will be seen later) it is also used to

represent a terminated command in a configuration.

3.1 Imperative Language Semantics

In this section, we review the semantics for our simple imperative language. A

program c is executed under amemory µ. Rather than modeling memory as an array

(phrases) p ::= e | c
(expressions) e ::= x | n | e1 + e2 | . . .
(commands) c ::= done | x := e |

if e then c1 else c2 |
while e do c | c1; c2

Figure 3.1: Core Language Syntax

20

of values which mutates upon updates, we use a purely functional abstraction where

µ is a partial function that maps identifiers to integers, integers being the only values

in our language. We assume that expressions are total and evaluated atomically, and

we write µ(e) to denote the value of expression e in memory µ. In our semantics, a

configuration is a pair (c, µ) where c is the command remaining to be executed and µ

is a memory. We write µ[x := v] to denote a new memory function that is identical

to µ, except that x is mapped to value v. Defining memory as a partial function can

lead to some complications; for example, the absence of a variable in the domain of

the memory-function could cause execution to get stuck. So we address these issues

by assuming a “well-formedness” property on our configurations:

Assumption 3.1.1 (Well-Formed Configurations) Given any configuration (c, µ)

in our languages and type systems, the domain of the memory-function, dom(µ),

contains all the identifiers in the command c.

Note that the semantics do not allow the generation of new identifiers; the domain

of the memory remains constant during program execution. Terminal configurations

are written as (done, µ) in our semantics. In previous work terminal configurations

were written as µ, but this leads to a proliferation of cases in proofs; it is therefore

more elegant to have only configurations of the form (c, µ). Also, we can now code

“if e then c” using “if e then c else done”.

The language uses a small-step semantics which is shown in Figure 3.2. We write

(c, µ)−→(c′, µ′) to indicate the transition from configuration (c, µ) to configuration

(c′, µ′). The transition relation is governed by a set of semantic rules. A semantic

rule is composed of a set of hypothesis, a separating line, and a conclusion. For

21

(updates) x ∈ dom(µ)
(x := e, µ)−→(done, µ[x := µ(e)])

(if s) µ(e) 6= 0
(if e then c1 else c2, µ)−→(c1, µ)

µ(e) = 0
(if e then c1 else c2, µ)−→(c2, µ)

(whiles) µ(e) = 0
(while e do c, µ)−→(done, µ)

µ(e) 6= 0
(while e do c, µ)−→(c;while e do c, µ)

(composes) (c1, µ)−→(done, µ′)
(c1; c2, µ)−→(c2, µ

′)

(c1, µ)−→(c′1, µ
′) c′1 6= done

(c1; c2, µ)−→(c′1; c2, µ
′)

(dones) (done, µ)−→(done, µ)

Figure 3.2: Core Language Semantics

example, consider rule updates:

(updates)
x ∈ dom(µ)

(x := e, µ)−→(done, µ[x := µ(e)])

that premises x is in the domain of µ. We can see that the well-formedness assump-

tion prevents executions of this command from getting stuck. Based on the premise,

executing command x := e on memory µ, evaluates e and yields a new memory-

function such x is now mapped to µ(e). Sometimes we need multiple semantic rules

to handle a command; for example, consider the command if e then c1 else c2; this

command takes different actions depending on whether the guard is true or false.

So we have two semantic rules, one for each premise. Here we see the first rule,

when the guard is true:

22

(if s)
µ(e) 6= 0

(if e then c1 else c2, µ)−→(c1, µ)

then, the meaning of the command is that subcommand c1 is selected for execution

next; no changes to the memory occur. We now describe the remaining semantic

rules in reference to Figure 3.2:

• whiles: when the guard is true, this rule prefixes the body of its loop with

itself for future execution. When the guard is false it simply terminates.

• composes: when the first command of the composition finishes in one step, this

rule selects the second command for “continuation”. Otherwise it selects the

resulting command of the first command together with the resulting memory.

• dones: this rule does nothing in one step. It is a bit odd for done to make

transitions, but necessary so that a command like “done; x := 5” does not

get stuck.

Our semantics make the language deterministic; we now argue this point, starting

with a proof that for any configuration there is one and only one “next step”.

Lemma 3.1.1 (Unique Next Step) For any configuration (c, µ) there is (c′, µ′)

such that (c, µ)−→(c′, µ′) and for any (c′′, µ′′) such that (c, µ)−→(c′′, µ′′), it must be

the case that (c′′, µ′′) = (c′, µ′).

Proof. By induction on the structure of c.

- If c is of the form done, then by rule dones, (c, µ)−→(done, µ) which estab-

lishes that there is at least one (c′, µ′) such that (c, µ)−→(c′, µ′). But is there

another (c′′, µ′′) such that (c, µ)−→(c′′, µ′′)? No, because there is no other

semantic rule by which (done, µ) may transition.

23

- If c is of the form x := e, then by rule updates, and only by this rule, (c, µ)−→

(done, µ[x := µ(e)]).

- If c is of the form if e then c1 else c2, first note that for fixed memory µ,

µ(e) yields one unique value that can either be 0 or not. If it is not 0 then by

first rule if s, and only by this rule, (c, µ)−→(c1, µ). Otherwise µ(e) = 0, then,

only by second rule if s, (c, µ)−→(c2, µ).

- If c is of the form while e do c1, then the argument is similar as the case for

the if command.

- If c is of the form c1; c2: then by induction there is unique (c′1, µ
′) such that

(c1, µ)−→(c′1, µ
′). c′1 can either be done or not. If it is, i.e., (c1, µ)−→(done, µ′),

then only by first rule composes can (c1; c2, µ) transition, and it must be to

(c2, µ
′). If c′1 is not done, then only by second rule composes can (c1; c2, µ)

transition, and it must be to (c′1; c2, µ
′).

Corollary 3.1.2 (Language Determinism) For any configuration (c, µ), for all

k ≥ 0, there is (c′, µ′) such that (c, µ)−→k(c′, µ′) and for any (c′′, µ′′) such that

(c, µ)−→k(c′′, µ′′), it must be the case that (c′′, µ′′) = (c′, µ′).

Proof. By induction on k.

• Base step: k = 0. Then (c′, µ′) = (c, µ).

• Inductive step: k = n + 1. By induction, there exists a unique configuration

(c′′, µ′′) such that (c, µ)−→n(c′′, µ′′). By Lemma 3.1.1, there exists unique

(c′′′, µ′′′) such that (c′′, µ′′)−→(c′′′, µ′′′). Finally let (c′, µ′) = (c′′′, µ′′′).

24

We remark that every configuration (c, µ) has a unique infinite trace

(c, µ)−→(c1, µ1)−→(c2, µ2)−→· · ·

If a configuration (ci, µi) where ci = done is reached then we have a terminating

execution, otherwise we have a nonterminating execution. We are now ready to

define a type system that will guarantee secure information flow.

3.2 Core Language Type System

Our typing rules simply enforce the Denning restrictions [DD77], which are described

in Chapter 2. Here are the types we will use in this chapter:

(data types) τ ::= L | H

(phrase types) ρ ::= τ | τ var | τ cmd

We use types H and L which represent the minimum set of types that is interest-

ing for our purpose, but could straightforwardly generalize to an arbitrary lattice.

Security types must at least form a partially ordered set (poset) but in our case a

lattice is more useful. For example, while an expression like e1 + e2 might not have

a unique least upper bound type in a poset, this would be guaranteed in a lattice.

See [Smi07] for more details. Also, we only type the security aspect of data (since

other than security, our data type is always integer). As usual, τ var is the type of

variables that store information of level τ , while τ cmd is the type of command that

assigns only to variables of level τ or higher; this implies that command types obey

an antimonotonic or contravariant subtyping rule with respect to data type. Note

that τ var is not subsumable while τ and τ cmd are.

Typing judgments have the form Γ ⊢ p : ρ, where Γ is a partial function that

maps identifiers to types of the form τ var . Generally, Γ is seldom mentioned.

25

Assumption 3.2.1 (Well-Formed Typing Judgments) Γ is a partial function

that maps identifiers to types. We assume that the domain of Γ ⊢ ρ includes all the

identifiers that are needed in ρ.

(base) L ⊆ H

(cmd) τ ⊆ τ ′

τ ′ cmd ⊆ τ cmd

(reflex) ρ ⊆ ρ

(trans) ρ1 ⊆ ρ2 ρ2 ⊆ ρ3
ρ1 ⊆ ρ3

(subsump) Γ ⊢ p : ρ1 ρ1 ⊆ ρ2
Γ ⊢ p : ρ2

(donet) Γ ⊢ done : H cmd

(int t) Γ ⊢ n : L

(rval t) Γ(x) = τ var
Γ ⊢ x : τ

(update t) Γ(x) = τ var Γ ⊢ e : τ
Γ ⊢ x := e : τ cmd

(plus t) Γ ⊢ e1 : τ Γ ⊢ e2 : τ
Γ ⊢ e1 + e2 : τ

(if t) Γ ⊢ e : τ Γ ⊢ c1 : τ cmd Γ ⊢ c2 : τ cmd
Γ ⊢ if e then c1 else c2 : τ cmd

(whilet) Γ ⊢ e : τ Γ ⊢ c : τ cmd
Γ ⊢ while e do c : τ cmd

(composet) Γ ⊢ c1 : τ cmd Γ ⊢ c2 : τ cmd
Γ ⊢ c1; c2 : τ cmd

Figure 3.3: Core Language Type System

Figure 3.3 shows the typing and subtyping rules of the core language. We say

that a command c is well typed with respect to Γ if Γ ⊢ c : τ cmd , for some τ .

26

The typing rules are the same as those in [VSI96], except for the new rule donet

which types done as a high command. We now briefly describe each typing rule in

reference to Figure 3.3.

• base: Our security lattice for this work has only two points H (high) and L

(low) with H higher than L.

• cmd : Commands types are contravariant with respect to the base types, e.g.:

H cmd ⊆ L cmd .

• reflex , trans : The subtyping relation ⊆ is reflexive and transitive.

• subsump: Any phrase can be retyped to a supertype. In our language, ex-

pressions and commands can be subsumed but there is no subsumption on

variable types, which are fixed by Γ. This is critical for the soundness of the

type system.

• donet: The command done is a H command.

• int t: Integer values are typed L.

• rval t: The value of a variable acquires the security level of the variable.

• updatet: In a valid update command, the security type of the expression must

be the same as (or be subsumable to) the type of the receiving variable. Then,

the resulting command must have at least that type, e.g.: let h : H var then

h := 3 : H cmd . As a second example: let l : L var then l := h is not

well typed because L var cannot be subsumed to H var . Again, note that

H commands are L commands because if the command only assigns to H

variables or higher then it also assigns only to L variables or higher1.

• plus t: The type of a sum must equal the type of both operands.

1As another example, billionaires are millionaires.

27

• if t: In a valid if command the type of the guard must be the same as the level

of both subcommands.

• whilet: In a valid while command the type of the guard must be the same as

the level of the body.

• composet: In a valid sequential composition the type of the command must be

the same as the type of the subcommands.

Note that under our well-formedness assumptions some typing rules (like plus t) do

not reject phrases as one can always find a type for any sum, while others (like if t)

do. This would be the case in general provided that the security classes form a lattice

and that Γ is “big enough”. We now argue some standard soundness properties for

our language and type system. The following example illustrates some of these

issues:

Example 3.2.1 (Typing Derivations) Consider the command

c = if h thenh1 := 1 else h1 := 0

where variables that start with h are typed H var, and those who start with l are

typed L var. We should be able to type c, H cmd, or L cmd depending on our cho-

sen typing derivation as follows:

Γ(h) = H var

Γ ⊢ h : H

(rvalt)

Γ ⊢ 1 : L

L ⊆ H

Γ ⊢ 1 : H

Γ(h1) = H var

Γ ⊢ h1 := 1 : H cmd

(intt)

(subsump)

(update t)

Γ ⊢ 0 : L

L ⊆ H

Γ ⊢ 0 : H

Γ(h1) = H var

Γ ⊢ h1 := 0 : H cmd

(int t)

(subsump)

(update t)

Γ ⊢ if h then h1 := 1 else h1 := 0 : H cmd

(if t)

28

Here, we type c : H cmd. But we can further type c : L cmd, by subsump. On

the other hand consider the command

c = if l then l1 := 1 else h1 := 0

Using rule if t, we cannot type c : H cmd because although we can always subsume

l : H, the command l1 := 1 cannot be typed H cmd. However going the other way,

we can subsume h1 := 1 : H cmd to L cmd, and type the complete command L cmd.

Here is a typing derivation:

Γ(l) = L var

Γ ⊢ l : L

(rvalt)

Γ ⊢ 1 : L

Γ(l1) = L var

Γ ⊢ l1 := 1 : L cmd

(int t)

(update t)

Γ ⊢ 0 : L

L ⊆ H

Γ ⊢ 0 : H

Γ(h1) = H var

Γ ⊢ h1 := 0 : H cmd

H cmd ⊆ L cmd

Γ ⊢ h1 := 0 : L cmd

(intt)

(subsump)

(update t)

(subsump)

Γ ⊢ if l then l1 := 1 else h1 := 0 : L cmd

(if t)

Next, consider the command

c = while l doh1 := h1 + 1

Again, this command can be typed H cmd or L cmd depending on the typing deriva-

tion. The following typing derivation types the while command H cmd:

29

Γ(l) = L var

Γ ⊢ l : L

L ⊆ H

Γ ⊢ l : H

(rvalt)

(subsump)

Γ(h1) = H var

Γ(h1) = H var

Γ ⊢ h1 : H

(rvalt)

Γ ⊢ 1 : L

L ⊆ H

Γ ⊢ 1 : H

(intt)

(subsump)

Γ ⊢ h1 + 1 : H

(plust)

Γ ⊢ h1 := h1 + 1 : H cmd

(updatet)

Γ ⊢ while l do h1 := h1 + 1 : H cmd

(whilet)

Then, we could, by adding an extra subsump step, type c : L cmd. Or alternatively

we could reach c : L cmd by leaving l : L and subsuming h1 := h1 + 1 to L cmd.

Now, if we are given some command d with Γ ⊢ d : L cmd , we only know that there

is some typing derivation that types d : L cmd . There may be other derivations

that reach other types, including any supertype. So given any typing judgement, we

cannot tell what typing rule was used last so the analysis of the typing derivation

is encumbered by a proliferation of cases that must be addressed. To address this,

we shall follow [VS99] with the following key assumption about typing derivations:

Assumption 3.2.2 (Normal-Form Typing Derivation) Given any typing deriva-

tion in our type system we assume, without loss of generality, that it ends with a

single (perhaps trivial) application of rule subsump.

There is no loss of generality because any sequence of subsump rules can be merged

using trans , and in case where there is no subsump rule we can use the reflexive

property of subsumption to insert a trivial application of rule subsump. We now

proceed with basic properties of the type system.

30

Lemma 3.2.1 (Simple Security) If Γ ⊢ e : τ , then e contains only variables of

level τ or lower.

Proof. By induction on the structure of e.

- If e is of the form x: by assumption 3.2.2, the last two steps of the typing

derivation must look like the following:

Γ(x) = τ ′ var

Γ ⊢ x : τ ′ τ ′ ⊆ τ

Γ ⊢ x : τ

(rval t)

(subsump)

Hence, Γ(x) = τ var or lower.

- If e is of the form n: e vacuously contains only variables of level τ or lower.

(since e doesn’t contain any variables).

- If e is of the form e1+e2: by assumption 3.2.2, the last two steps of the typing

derivation must look like:

Γ ⊢ e1 : τ
′

Γ ⊢ e2 : τ
′

Γ ⊢ e1 + e2 : τ
′ τ ′ ⊆ τ

Γ ⊢ e1 + e2 : τ

(plus t)

(subsump)

Hence, Γ ⊢ e1 : τ ′ and Γ ⊢ e2 : τ ′. Then by induction, e1 contains only

variables of level τ ′ or lower and again by induction, e2 contains only variables

of level τ ′ or lower. But since τ ′ ⊆ τ , then e1 and e2 contain only variables of

level τ or lower.

31

Lemma 3.2.2 (Confinement) If Γ ⊢ c : τ cmd, then c assigns only to variables

of level τ or higher.

Proof. By induction on the structure of c.

- If c is of the form done: then it vacuously assigns to variables of level τ or

higher (since c doesn’t assign to any variables).

- If c is of the form x := e: by assumption 3.2.2, the last two steps of the typing

derivation must look like:

Γ(x) = τ ′ var

Γ ⊢ e : τ ′

Γ ⊢ x := e : τ ′ cmd

τ ′ cmd ⊆ τ cmd

Γ ⊢ x := e : τ cmd

(updatet)

(subsump)

Hence, Γ(x) = τ ′ var with τ ⊆ τ ′, i.e., τ ′ is at least as high as τ . So in this

case, c assigns only to variables of level τ or higher.

- If c is of the form if e then c1 else c2: by assumption 3.2.2, the last two steps

of the typing derivation must look like:

Γ ⊢ e : τ ′

Γ ⊢ c1 : τ
′ cmd

Γ ⊢ c2 : τ
′ cmd

Γ ⊢ if e then c1 else c2 : τ
′ cmd

τ ′ cmd ⊆ τ cmd

Γ ⊢ if e then c1 else c2 : τ cmd

(if t)

(subsump)

32

Hence, Γ ⊢ c1 : τ ′ cmd and Γ ⊢ c2 : τ ′ cmd , where τ ⊆ τ ′. Then by two

applications of induction, c1 and c2 assigns only to variables of level τ ′ or

higher. So c1 and c2 assign only to variables of level τ or higher.

- If c is of the form while e do c1: the argument is similar to the if case.

- If c is of the form c1; c2: by assumption 3.2.2, the last two steps of the typing

derivation must look like:

Γ ⊢ c1 : τ
′ cmd

Γ ⊢ c2 : τ
′ cmd

Γ ⊢ c1; c2 : τ
′ cmd

τ ′ cmd ⊆ τ cmd

Γ ⊢ c1; c2 : τ cmd

(composet)

(subsump)

Hence, Γ ⊢ c1 : τ ′ cmd and Γ ⊢ c2 : τ ′ cmd . Then by two applications of

induction, c1 and c2 assigns only to variables of level τ ′ or higher. So c1 and

c2 assigns only to variables of level τ or higher.

Lemma 3.2.3 (Subject Reduction) If Γ ⊢ c : τ cmd and (c, µ) −→ (c′, µ′), then

Γ ⊢ c′ : τ cmd.

Proof. By induction on the structure of c.

- If c is of the form done: then by rule dones, (c, µ)−→(c, µ), so c′ = c, hence

c′ : τ cmd .

- If c is of the form x := e: then by rule updates, (c, µ)−→(done, µ[x := µ(e)])

with Γ ⊢ c′ : H cmd (by rule donet). Then by rule subsump, Γ ⊢ c′ : τ cmd

for any τ cmd .

33

- If c is of the form if e then c1 else c2: by assumption 3.2.2, the last two steps

of the typing derivation must look like:

Γ ⊢ e : τ ′

Γ ⊢ c1 : τ
′ cmd

Γ ⊢ c2 : τ
′ cmd

Γ ⊢ if e then c1 else c2 : τ
′ cmd

τ ′ cmd ⊆ τ cmd

Γ ⊢ if e then c1 else c2 : τ cmd

(if t)

(subsump)

Hence, Γ ⊢ c1 : τ ′ cmd and Γ ⊢ c2 : τ ′ cmd where τ ′ cmd ⊆ τ cmd . If

transition is by first rule if s then (c, µ)−→(c1, µ), if transition is by second

rule if s then (c, µ)−→(c2, µ). In either case by rule subsump, Γ ⊢ c′ : τ cmd .

- If c is of the form while e do c1: by assumption 3.2.2, the last two steps of

the typing derivation must look like:

Γ ⊢ e : τ ′

Γ ⊢ c1 : τ
′ cmd

Γ ⊢ while e do c1 : τ
′ cmd

τ ′ cmd ⊆ τ cmd

Γ ⊢ while e do c1 : τ cmd

(whilet)

(subsump)

Hence, Γ ⊢ c1 : τ ′ cmd where τ ′ cmd ⊆ τ cmd . If transition is by first rule

whiles, then (c, µ)−→(done, µ). If transition is by second rule whiles, then

(c, µ)−→(c1; c, µ) and since both c1 and c are typed τ ′ cmd , then by rule

composet, Γ ⊢ c1; c : τ
′ cmd . In either case by rule subsump, Γ ⊢ c′ : τ cmd .

- If c is of the form c1; c2: by assumption 3.2.2, the last two steps of the typing

derivation must look like:

34

Γ ⊢ c1 : τ
′ cmd

Γ ⊢ c2 : τ
′ cmd

Γ ⊢ c1; c2 : τ
′ cmd

τ ′ cmd ⊆ τ cmd

Γ ⊢ c1; c2 : τ cmd

(composet)

(subsump)

Hence, Γ ⊢ c1 : τ ′ cmd and Γ ⊢ c2 : τ ′ cmd where τ ′ cmd ⊆ τ cmd . If

transition is by first rule composes, then (c, µ)−→(c2, µ
′) with Γ ⊢ c2 : τ

′ cmd .

If transition is by second rule composes, then (c, µ)−→(c′1; c2, µ
′). Then by

induction Γ ⊢ c′1 : τ
′ cmd and since we already established that Γ ⊢ c2 : τ

′ cmd ,

then by rule composet, Γ ⊢ c′1; c2 : τ ′ cmd . In either case by rule subsump,

Γ ⊢ c′ : τ cmd .

In this section we have established the basic properties of our type system. We

now pause for some background theory that will be needed before proceeding to

more advanced properties of our type system.

3.3 Fast Simulation for Transition Systems

In this section we define fast simulation in the general setting of nondeterministic

transition systems; later we will apply these concepts to specific languages and

type systems but for now it is all in the abstract. This work is based on the fast

simulation section from [SA07], which in turn was based on the concepts of strong

and weak simulation for discrete time Markov chains by Christel Baier, Joost-Pieter

Katoen, Holger Hermanns, and Verena Wolf [BKHW05]. This work is particularly

suitable for us because it is based on local analysis (at the level of a transition

35

or

s1 s2

t2t1

R

R

R

Figure 3.4: Graphical representation of fast simulation

step) yet it scales to the behavior of the entire system. We seek a definition for

a nondeterministic setting, although later we will also extend it to a probabilistic

setting, but first we define a transition system as follows:

Definition 3.3.1 (Transition System) A transition system is a pair (S,−→) where

S is a set of states and −→ is a transition relation: (−→ ⊆ S × S). S may

include terminal states. A terminal state t ∈ S is defined as a state such that

({t} × S)∩−→ is{(t, t)} or ∅, i.e., t is a state without outgoing transitions or with

a single transition to itself.

In this setting we define fast simulation as a binary relation R such that if s1, s2 ∈ S

and s1Rs2, then any transition from s1 can be “matched” by s2 in zero or one steps.

Formally,

Definition 3.3.2 (Fast Simulation) Let (S,−→) be a transition system. A bi-

nary relation R on S is a fast simulation if whenever s1Rs2, for any state t1 such

that s1−→t1 either t1Rs2 or there is t2 such that s2−→t2 and t1Rt2.

Figure 3.4 illustrates the definition of fast simulation. In it, the dotted lines denote

a fast simulation relation R, while the solid lines denote a transition relation −→. A

transition from state s1 to t1 is simulated either by s2 in place, or else by t2, where

t2 is a state reachable from s2.

36

Example 3.3.1 (Simulation Relations) To illustrate this concept, consider tran-

sition system (S,−→). Let us see if some of the common relations on S are fast

simulations. Specifically we test the identity, universal and empty relations on S:

• Let R be the identity relation on S. Then, R is a fast simulation because if

s1Rs2 then s1 = s2. Hence, for any state s1 may transition to: s1−→t1; s2

can do the same: s2−→t1 with t1R t1.

• Let R be the universal relation on S. Then, R is a fast simulation because if

s1Rs2 and s1−→t1, then t1Rs2.

• Let R be the empty relation on S. Then, R is a fast simulation vacuously.

Next we argue the key property of fast simulation; essentially, that from the sim-

ulating state we can reach terminal states faster or as fast as from the simulated

state, but first we have a simple lemma that extends simulation to multiple steps.

Lemma 3.3.3 (Simulation of Multiple Transitions) Let R be a fast simula-

tion and let s1Rs2. If s1 can reach t1 in k steps then there is a t2 that s2 can reach

in k′ steps, k′ ≤ k, such that t1R t2.

Proof. By induction on k.

1. Base step: k = 0, then t1 = s1 and t2 = s2 so k′ = 0 ≤ k.

2. k = 1, then by Definition 3.3.2, either t1Rs2 in which case t2 = s2 and k′ = 0

or s2−→t2 for some t2 with t1R t2, in which case k′ = 1. In either case k′ ≤ k.

3. Inductive step: k = n+ 1 for some n ≥ 0. We argue that if s1 reaches t1 in k

steps then s2 reaches t2 in k′ steps, with t1R t2 and k′ ≤ k. Let t′1 be the state

prior to reaching t1, i.e., the n
th step from s1. By induction, s2 can reach some

state t′2 in n′ steps, with t′1R t′2 and n′ ≤ n. Then since we have that t′1−→t1,

37

by Definition 3.3.2 either t1R t′2 (in 0 transitions) or t′2−→t2 (in 1 transition)

for some t2 with t1R t2. We conclude that since k = n + 1, n′ ≤ n, and the

last transition is simulated in 0 or 1 steps, it follows that k′ ≤ k.

Definition 3.3.4 (Upwards Closed Set) Let R be a binary relation on S. A set

T of states is upwards closed with respect to R if, whenever s ∈ T and sR s′, we

also have s′ ∈ T .

Theorem 3.3.5 (Reachability) Let R be a fast simulation, let T be an upwards

closed set with respect to R, and let s1Rs2. If s1 can reach T in k steps then s2 can

reach T in k′ steps with k′ ≤ k.

Proof. Let t1 ∈ T be the state that is reached in k steps. By Lemma 3.3.3, there

is simulating state t2 such that s2−→
k′t2 with t1R t2 and k′ ≤ k, which implies by

Definition 3.3.4, that t2 ∈ T .

3.4 Stripping and Fast Low Simulation

In this section we explore stripping and fast low simulation within the context of the

transition systems defined by our language semantics and type system. Our goal

is to extend properties established at the level of individual steps to useful security

properties of complete program executions.

Thus far, bisimulation has been the most common technique for proving non-

interference and indeed it is possible to prove noninterference in this language by

establishing some sort of low bisimulation between any two runs. Nevertheless,

bisimulation works in a limited number of models where runs can be established to

be step-wise bisimilar and some language models do not meet this requirement. For

38

example, multiple executions of the same program with L-equivalent initial mem-

ories in the language of [AS09] are not bisimilar; however, if an execution reached

a terminal state, this state would be the same for all executions. Section 2.1 has a

brief history of bisimulation.

Leaking via nontermination. In our language the values of H variables can de-

termine whether the execution will terminate or loop forever. For example, consider

the program:

while h = 1do done;

l := 0

This program terminates in two steps except when h equals 1, in which case it loops.

Assuming that h isH and l is L, this program satisfies the Denning restrictions and it

is well typed under our typing rules, however it does not satisfy termination sensitive

noninterference. Intuitively, the program is “trying” to set l to 0, but the while

loop can prevent assignments to l from being reached; i.e., the high computation

within some executions is “messing things up” and so if we were able to remove it

from the program then we could model the execution of the program as far as the

low variables is concerned.

So we define a “stripped” version of c, which we denote by ⌊c⌋ for any well-typed

program c. In ⌊c⌋, all high commands are removed; more precisely, we eliminate

any subcommands that make no assignment to L variables; or more formally, we

remove subcommands which have a typing derivation that ends in H cmd . Thus,

the stripped version of the example above would look like:

l := 0

We emphasize that stripping is for us a thought experiment—it is not something that

we would actually use in an implementation, but rather it is a means to understand

a program’s behavior.

39

Definition 3.4.1 (Stripping Function) Let c be a well-typed command. We de-

fine ⌊c⌋ = done if c has type H cmd; otherwise, define ⌊c⌋ by

• ⌊x := e⌋ = x := e

• ⌊if e then c1 else c2⌋ = if e then ⌊c1⌋ else ⌊c2⌋

• ⌊while e do c⌋ = while e do ⌊c⌋

• ⌊c1; c2⌋ =

⌊c2⌋ if c1 : H cmd

⌊c1⌋ if c2 : H cmd

⌊c1⌋; ⌊c2⌋ otherwise

Also, we define ⌊µ⌋ to be the result of deleting all H variables from µ, define ⌊·⌋ as

the relation that is derived from the stripping function such that c ⌊·⌋ d iff d = ⌊c⌋,

and we extend ⌊·⌋ to well-typed configurations by ⌊(c, µ)⌋ = (⌊c⌋, ⌊µ⌋).

Note that we use stripping as a function and as a relation2. Initially, stripping was

introduced in [SA07], but in this paper stripping replaced H subcommands with

skip; in contrast our new definition here aggressively eliminates such subcommands.

Note also that ⌊µ⌋ and µ agree on L variables. Later, we shall formalize this notion

as low equivalence and denote it with the binary relation: ∼L . Now we argue a

basic property of the stripping function:

Lemma 3.4.2 For any command c, ⌊c⌋ contains only L variables.

Proof. By induction on the structure of c. If c : H cmd , then ⌊c⌋ = done, which

vacuously contains only L variables. Otherwise there is no typing derivation that

leads to c : H cmd . In this case, we consider the possible forms of c.

2In set theory, functions are defined as certain kinds of binary relations.

40

- If c is of the form x := e, then ⌊c⌋ = x := e. By rule update t and subsump

(subsump is trivial throughout these cases), we must have that x : L var and

e : L, which implies by Simple Security that e contains only L variables.

- If c is of the form if e then c1 else c2, then ⌊c⌋ = if e then ⌊c1⌋ else ⌊c2⌋.

By rule if t and subsump, e : L, by Simple Security, e contains only L variables.

Then by induction, ⌊c1⌋ contains only L variables and again by induction, ⌊c2⌋

contains only L variables.

- If c is of the form while e do c1, then ⌊c⌋ = while e do ⌊c1⌋. By rule whilet

and subsump e : L, which implies by Simple Security that e contains only L

variables. And, by induction, ⌊c1⌋ contains only L variables.

- If c is of the form c1; c2, ⌊c⌋ can be of the form: ⌊c1⌋; ⌊c2⌋, ⌊c1⌋, or ⌊c2⌋.

Then, by induction, ⌊c1⌋ contains only L variables and by induction again,

⌊c2⌋ contains only L variables.

Now, consider the execution of a program configuration (a program with its initial

memory) and its stripped version. Using the results thus far, we can argue that

the execution of the stripped configuration is absent of all high computation. Sup-

pose that the stripped version simulates the original configuration up to the final

values of the low variables. Then it does not matter whether the original execution

contains high computation or not (unless the execution is delayed forever by the

high computation). Ultimately, this is all that is needed to argue a noninterference

property.

41

3.5 Noninterference of Well-Typed Programs

In this section we argue a termination-insensitive noninterference property on well-

typed programs, i.e., we want to establish that two executions of a program with

different H values produce identical L results (if they both terminate). We certainly

need a termination-insensitive property since, under the Denning restrictions, H

variables can affect termination.

Consider two executions of a program with different high memories. By defi-

nition, stripping the two initial configurations of their high commands must yield

equal low configurations . Now, if these low configurations can low simulate3 the

original programs, then each pair of programs (a program and its stripped version)

will execute together. At the first step, the executions of the original programs may

diverge depending on the language (although not the case in this core language) and

so will diverge the simulating executions. Nevertheless, if the simulating programs

reach the same terminal state4, then it must be the case that the original programs

must reach terminal configuration with the same low results (if they are not delayed

forever by the high computation). This implies that executions that reach terminal

states are not affected by high computation, i.e., a noninterference property.

We now formalize these ideas, starting with the equivalence of memories with

respect to their low-variables5.

3Simulate up to the final values of the low variables.

4Or, in a probabilistic setting, reach terminal states with equal probability.

5Please note that there is no longer a requirement that the memories share the same
domain. This is a departure from the historical definitions of low equivalence, but it is
necessary because intuitively, if we were to strip a memory of its high variables, the result
should be low equivalent to the original memory. Yet this would not be the case if we
maintained a domain requirement.

42

or

↓

R

R

R

(d, ν)

(d′, ν ′)

(c, µ)

(c′, µ′)

↓

Figure 3.5: Graphical representation of fast low simulation

Definition 3.5.1 (Low-equivalent Memories) Two memories µ and ν are L-

equivalent, written µ ∼L ν, if they agree on the values of all L variables.

Next, we apply fast simulation (Section 3.3) to our language setting. The new

definition is called fast low simulation and it aims to capture the idea of simulating

up to the final values of the low variables.

Definition 3.5.2 (Fast Low Simulation) A binary relation R on well-typed con-

figurations is a fast low simulation if R is a fast simulation and whenever (c1, µ1)R(c2, µ2),

we have that µ1 ∼L µ2.

Figure 3.5 illustrates the definition of fast low simulation. Clearly, fast low simula-

tions are fast simulations, so a fast low simulating state will match the simulated

state in 0 or 1 steps. But now the matching criteria also requires that the memories

be low equivalent.

As we can see, this definition meets our intuitive requirements that in stepwise

execution within our core language, a simulating configuration is able to match the

original program as far as the low variables and in at most the same number of

steps (Theorem 3.3.5). We will use this concept extensively throughout this work

and extend this definition to a probabilistic setting; we will also use variants of this

definition to prove noninterference properties on three other languages.

43

Using our definition of fast low simulation within our language and type system

we can now make up relations on the set of configurations and test to see if they

are fast low simulations. In general, some fast low simulations will be more useful

than others; the identity and empty relations of Example 3.3.1 are also fast low

simulations6 but they are of little use. However, we have the very relation we

need since our stripping relation fulfills the intuition of removing all but the “low

computation” from a program execution. So we continue with the key theorem of

this chapter about the stripping relation ⌊·⌋:

Theorem 3.5.3 ⌊·⌋ is a fast low simulation.

Proof. Let (c, µ)⌊·⌋(d, ν). First, we quickly argue that whenever (c, µ)⌊·⌋(d, ν), we

must have that µ ∼L ν. By Definition 3.5.2, ν = ⌊µ⌋ which implies that µ ∼L ν.

Next, we must show that the configuration reachable from (c, µ) in one step can be

“matched” by (d, ν), in zero or one steps.

By Definition 3.4.1, d = ⌊c⌋ and ν = ⌊µ⌋. Suppose that (c, µ)−→(c′, µ′), it

suffices to show that either:

Condition 1. (d, ν) = (⌊c′⌋, ⌊µ′⌋) (match in place)

or

Condition 2. (d, ν)−→(d′, ν ′) such that (d′, ν ′) = (⌊c′⌋, ⌊µ′⌋).

We make this argument by induction on the structure of c. If c : H cmd then

d = done. By Confinement we have µ ∼L µ′, which implies that ν = ⌊µ′⌋. By

Subject Reduction we have c′ : H cmd , which implies that ⌊c′⌋ = done. Hence, the

move (c, µ)−→(c′, µ′) is matched in place by (d, ν) with (d, ν) = (⌊c′⌋, ⌊µ′⌋), which

6Note that the universal relation is not a fast low simulation because if s1Rs2 then
they must have low equivalent memories.

44

meets Condition 1. Next, if c does not have type H cmd , then consider the possible

forms of c:

1. c is of the form x := e. Here d = x := e. By rule update t and subsump

(subsump is trivial throughout these cases), x : L var and e : L. By updates,

µ′ = µ[x := µ(e)] and ν ′ = ν[x := ν(e)], and by Simple Security ν(e) = µ(e),

which implies that ν ′ = ν[x := ν(e)] = ⌊µ[x := µ(e)]⌋ = ⌊µ′⌋. Hence the move

(c, µ)−→(done, µ[x := µ(e)]) is matched by the move (d, ν)−→(done, ν[x :=

ν(e)]). This meets Condition 2.

2. c is of the form if e then c1 else c2. Here d = if e then d1 else d2 where

d1 = ⌊c1⌋ and d2 = ⌊c2⌋. By rule if t and subsump, e : L and by Simple

Security ν(e) = µ(e). So if µ(e) 6= 0, then by first rule if s, (c, µ)−→(c1, µ).

By the same rule, (d, ν)−→(d1, ν) so that the move from (c, µ) is matched by

the move from (d, ν) in one step. This meets Condition 2. If µ(e) = 0, then

we have a similar result.

3. c is of the form while e do c1. Here d = while e do d1 where d1 = ⌊c1⌋.

By rule whilet and subsump, e : L and c1 does not have type H cmd . By

Simple Security, ν(e) = µ(e). So in case µ(e) 6= 0, then the move (c, µ)−→

(c1;while e do c1, µ) (by second rule whiles) is matched by (d, ν)−→ (d1;

while e do d1, ν) (by the same rule). This meets Condition 2. When µ(e) =

0, then by two applications of first rule whiles, the move (c, µ)−→(done, µ) is

matched by the move (d, ν)−→(done, ν). This meets Condition 2.

Next we address the case when c is of the form c1; c2. First recall that under rule

composes, any move from (c1; c2, µ) results from a move (c1, µ)−→(c′1, µ
′) where c′1

may or may not be done. Depending on this, the transitions from c can be:

45

(c1; c2, µ)−→(c2, µ
′)

or

(c1; c2, µ)−→(c′1; c2, µ
′)

Simulating (c, µ) we have (d, ν) where d = ⌊c1; c2⌋ and ν = ⌊µ⌋. Depending on

the types of c1 and c2, d has three possible forms which we handle separately.

1. First, if neither c1 nor c2 has type H cmd then d = ⌊c1⌋; ⌊c2⌋ = d1; d2 where

d1 = ⌊c1⌋ and d2 = ⌊c2⌋. By induction, the move (c1, µ)−→(c′1, µ
′) can be

matched by (d1, ν) using either Condition 1 or Condition 2 above. We now

address each condition in turn.

(a) If Condition 1 is met on (c1, µ)−→(c′1, µ
′); i.e., (d1, ν) can match the move

of (c1, µ) in place, then d1 = ⌊c′1⌋ and ν = ⌊µ′⌋, i.e., (c′1, µ
′)⌊·⌋(d1, ν). Now

observe that d1 cannot be done because only H commands strip to done

and c1 cannot be typed H command. This implies that c′1 cannot have

type H cmd and in particular c′1 cannot be done. Hence the move from

c must be by the second rule composes, (c1; c2, µ)−→(c′1; c2, µ
′). Then,

(d, ν) matches in place with d = d1; d2 = ⌊c′1⌋; ⌊c2⌋ = ⌊c
′⌋. This meets

Condition 1.

(b) If Condition 2 is met on (c1, µ)−→(c′1, µ
′); then the transition must be

matched by (d1, ν)−→(d′1, ν
′) where (c′1, µ

′)⌊·⌋(d′1, ν
′). We now consider

three distinct cases for c′1:

i. If c′1 = done then the move from cmust be by the first rule composes:

(c1; c2, µ)−→(c2, µ
′). Then, d can make a matching move using first

rule composes: (d1; d2, ν)−→(d2, ν
′) with (c′, µ′)⌊·⌋(d′, ν ′). Hence,

condition 2 is met.

46

ii. If c′1 : H cmd but c′1 6= done, then the move from c must be

by the second rule composes: (c1; c2, µ)−→(c′1; c2, µ
′). But, d′1 =

done, hence, the move from d must be by the first rule composes:

(d1; d2, ν)−→(d2, ν
′) with (c′1; c2, µ

′)⌊·⌋(d2, ν ′). Hence, condition 2 is

met.7

iii. If c′1 does not have typeH cmd , then the move from c is by the second

rule composes: (c1; c2, µ)−→(c′1; c2, µ
′). Recalling that by induction

d′1 = ⌊c
′
1⌋ we must have that d′1 6= done. And so the matching move

from dmust be by the second rule composes: (d1; d2, ν)−→(d′1; d2, ν
′),

where (c′1; c2, µ
′)⌊·⌋(d′1; d2, ν

′). Hence, condition 2 is met.

2. Second, if c1 : H cmd then d = ⌊c1; c2⌋ = ⌊c2⌋ = d2. If the move from c

is by the first rule composes, then we must have (c1, µ)−→(done, µ′), where

by Confinement µ ∼L µ′. So the move (c1; c2, µ)−→(c2, µ
′) is matched in zero

steps by (d2, ν) where (c′1; c2, µ
′)⌊·⌋(d2, ν). This meets Condition 1.

If instead the move from c is by the second rule composes, then we must have

(c1, µ)−→(c′1, µ
′), where by Confinement µ ∼L µ′, and by Subject Reduction

c′1 : H cmd . Hence the move (c1; c2, µ)−→(c′1; c2, µ
′) is again matched in zero

steps by (d2, ν), where (c′1; c2, µ
′)⌊·⌋(d2, ν). This meets Condition 1.

3. Third, if c2 : H cmd then d = ⌊c1; c2⌋ = ⌊c1⌋ = d1. In this case the argument

is essentially the same as in the first case (a).

7An example illustrating this situation is when c is (if 0 then l := 1 else h := 2); l :=
3. This goes in one step to h := 2; l := 3, which strips to l := 3. In this case, ⌊c⌋ =
(if 0 then l := 1 else done); l := 3, which goes in one step to l := 3.

47

Corollary 3.5.4 (Terminal Reachability) Let T be an upwards closed set of

configurations with respect to ⌊·⌋. If (c, µ) can reach T in k steps, then (⌊c⌋, ⌊µ⌋)

can reach T in k′ steps with k′ ≤ k.

Proof. By Theorem 3.5.3, ⌊·⌋ is a fast low simulation, by Definition 3.5.2, ⌊·⌋ is also

a fast simulation. Then by Theorem 3.3.5, k′ ≤ k.

Corollary 3.5.4 establishes that a stripped configuration will terminate as fast or

faster than the original configuration. We are now able to predict the behavior of

complete executions of a well-typed program c from its stripped version ⌊c⌋. Given

two such executions of c, one under memories µ and ν, and assuming that µ and ν

are low equivalent, we can now predict the behavior of two such complete executions

as far as the low variables are concerned. The reason is that, by Lemma 3.4.2, ⌊c⌋

contains only L variables, which means that its behavior under µ must be identical

to its behavior under ν. Hence we can build a “bridge” between (c, µ) and (c, ν):

(c, µ)
Cr 3.5.4
←−−−→ (⌊c⌋, ⌊µ⌋) ≡ (⌊c⌋, ⌊ν⌋)

Cr 3.5.4
←−−−→ (c, ν)

because the stripped configurations are equal. Then, supposing that (c, µ) and

(c, ν) both terminate, by our reachability result above, their stripped version would

also terminate (at least as fast) and by the language determinism result and by

Lemma 3.3.3, the stripped configuration would reach a unique final state. Hence,

all final memories would be low equivalent. And so, we have informally argued the

following corollary:

Corollary 3.5.5 Let c be a well-typed command. Let µ and ν be memories such

that µ ∼L ν. Suppose that (c, µ) and (c, ν) can both execute successfully, reaching

terminal configurations (done, µ′) and (done, ν ′) respectively. Then µ′ ∼L ν ′.

48

⌊·⌋
(done, ν ′)

↓∗

⌊·⌋ ⌊·⌋

⌊·⌋
(done, µ′)

↓∗

(c, µ) (c, ν)

↓∗

(⌊c⌋, ⌊µ⌋)

(done, ⌊µ′⌋)

Figure 3.6: Noninterference of terminating executions

Proof. By definition 3.4.1, (c, µ)⌊·⌋⌊(c, µ)⌋ and (c, ν)⌊·⌋⌊(c, ν)⌋ and since µ ∼L ν

then ⌊µ⌋ = ⌊ν⌋. Also, since ⌊·⌋ is a fast low simulation, and since the original

configurations terminate, then by Corollary 3.5.4, ⌊(c, µ)⌋ and ⌊(c, ν)⌋ must also

terminate successfully in at most the same number of steps, Now, by Lemma 3.3.3,

⌊(done, µ′)⌋ is reached from ⌊(c, µ)⌋ and ⌊(done, ν ′)⌋ is reached from ⌊(c, ν)⌋. Then,

by Corollary 3.1.2, ⌊(done, µ′)⌋ = ⌊(done, ν ′)⌋. It follows that µ′ ∼L ν ′.

Figure 3.6 illustrates the proof idea for the noninterference theorem. Assuming that

µ ∼L ν (which implies that ⌊µ⌋ = ⌊ν⌋) and that the two executions reach terminal

configurations, we must have that the stripped version reaches a terminal configu-

ration (done, ⌊µ′⌋) at least as fast as the original executions; since the language is

deterministic, (done, ⌊µ′⌋) must be unique. So the bridge is reestablished and it

follows that the two final memories must be low equivalent.

In this chapter we presented our core theory based on a simple imperative lan-

guage and a fairly nonrestrictive type system. The language has been modified by

the introduction of done and the removal of skip which simplify its formal treat-

ment producing shorter and more elegant proofs. The core theory is based on a new

technique to prove noninterference where other techniques are ineffective. The key

concept of the new technique, fast low simulation, allows for executions to “diverge”

as long as there are common convergent states. In this chapter, in our determinis-

tic language we did not exercise this capability, instead we demonstrated the core

49

technique of stripping and fast low simulation in lieu of bisimulation. However,

in the following chapters, we use the core techniques within nondeterministic and

probabilistic settings, as well as with a language with cryptographic primitives.

50

CHAPTER 4

SECURE INFORMATION FLOW FOR DISTRIBUTED SYSTEMS.

In this chapter, which is a revised version of [AS09], we extend our core theory

to abstract distributed systems. The execution model of our language in this case

is nondeterministic. Our goal is to provide the programmer with a simple and safe

abstract language, with a built-in API to handle communication between processes.

The abstract language should hide all communication protocols that control the

data exchange between processes and all the cryptographic operations that ensure

the confidentiality of the data transmitted. The language should have mechanisms

to send and receive messages; and as in the previous chapter, the language should

have the ability to classify data based on security levels; the language should also

have a soundness property that says that distributed system cannot leak classified

information to lower classifications. We would like our language to have the same

clean familiar syntax and expressability of the previous language. Intuitively, each

node should execute one or more imperative programs that can communicate with

the other programs on the other nodes. The programmer should not have to worry

about how the sending and receiving of messages is accomplished, except that mes-

sages are sent and received by processes safely.

A distributed system thus, is a group of programs executing in a group of nodes

such that there is at least one program per node. An executing program with its

local data is a process. As our processes may reside in separate nodes, they should

have their own private memories and be able to send and receive messages from

other processes.

51

-∆1-

Process 1
send(a, h1)

Process 2
receive(a, l2)

-∆2-

Process 1
if (h1 is even) then

run a long time;
send(a, 1)

Process 2
if (h2 is odd) then

run a long time;
send(a, 0)

Process 3
run a short time;
receive(a, l3)

-∆3-

Process 1
if (h1 is even) then

run a long time;
send(a, 1)

Process 2
run a short time;
if (channel a has data)

then l2 := 0
else l2 := 1

Figure 4.1: Distributed Attacks

4.1 An Abstract Language for Distributed Systems

Language requirements. In crafting our language we methodologically examine the

obvious design pitfalls which would surely make it unsound and adjust the type

system to eliminate the vulnerabilties. As in the previous chapter, we would like

to classify data according to a security lattice, which in our case will be limited

to H and L, and we would like to maintain the ability to transmit and receive H

and L values. This implies that the language will need separate communication

channels for each classification, otherwise we would only be able to receive messages

using H variables. To demonstrate this, please note adversary ∆1 of Figure 4.1. In

this attack, Process 1 sends a H variable on channel a, but Process 2 receives it

into a L variable. Because of subsumption, H channels can transmit H or L data

but the receiving variable must be typed H , while L channels can only transmit

L data. Therefore our communication channels must have a security classification.

What else do they need? Unfortunately, communication channels will also need a

specific source process and a specific destination process. The reason is exemplified

by distributed system ∆2 of Figure 4.1. In this attack, Process 1 and Process 2 both

52

send on channel a. If we assume that h1 and h2 are initialized to the same secret

value, then the last bit of this value is leaked into l3 (assuming sufficiently “fair”

scheduling). A solution to these two attacks (∆1 and ∆2) is to restrict the type

of communication channels. Hence our communication channels are typed τ chi,j

which specifies the security level (τ) and the sending (i) and receiving (j) processes.

Another limitation of distributed systems is that processes cannot be allowed

to test if a channel has data. This ability would render the language unsound by

allowing internal timing channels1. This is illustrated by distributed system ∆3 of

Figure 4.1. This attack leaks the last bit of h1 to l2. When h1 is even Process 1

takes a long time to send its message so when Process 2 checks, the channel will be

empty. Therefore we do not allow processes to make such tests.

The astute reader may have noticed that in a nondeterministic world we would

not really have to worry about some of these attacks, these being more related

to a probabilistic environment. In general nondeterministic transitions are read as

“could transition to”. However we have presented the attacks this way for two rea-

sons: first, our goal is a language that would also be sound under a probabilistic

implementation; second, the attacks presented are intuitive and easy to understand.

Hence, Figure 4.2 shows a nondeterministic attack which (although more complex)

accomplish equivalent leaks as the probabilistic attacks of Figure 4.1. ∆4, the non-

deterministic version of ∆1 is identical, but ∆5 is very different from ∆2; running it

results in the last bit of h being leaked to l1. Upon execution, Process 1 sends h to

Process 2 and Process 3 on respective channels and waits for a response from either

process on a common public-channel. If h is odd then Process 2 will respond imme-

diately sending the public value 1 to Process 1 while Process 3 waits. If h is even

1Throughout this work we call internal timing channels, logical channels that do not
require a time clock to leak information.

53

-∆4-

same as ∆1

Process 1
send(a, h1)

Process 2
receive(a, l2)

-∆5-

Process 1
send(a, h); send(b, h)
receive(c, l1);
send(a, h); send(b, h)

Process 2
receive(a, h2);
if (h2 is even) then

receive(a, h2);
send(c, 1)

Process 3
receive(b, h3);
if (h3 is odd) then

receive(b, h3);
send(c, 0)

-∆6-

Process 1
if (h1 is even) then

receive(c, h1);
send(a, 1)

Process 2
if (channel a has data)

then l2 := 0
else l2 := 1;

send(c, 1)

Figure 4.2: Distributed Attacks (nondeterministic)

then Process 1 receives a public value 0 from Process 3. ∆6, the nondeterministic

version of ∆3, creates a dependence between the final value of the low variable l2 and

h1. Whenever h1 is even l2 = 0 although otherwise l2 could be 0 or 1, nonetheless,

possibilistic noninterference is broken by this attack.

Because a process trying to receive from a channel must block until a message is

available, the programmer has to be careful to ensure that for each receive, there is a

corresponding send. The converse, however, is not required since a process may send

a message that is never received. Indeed, processes should not be required to wait

on send and should be able to send multiple times on the same channel. To handle

this, we will need an unbounded buffer for each channel, where sent messages wait to

be received. We would like to restrict processes as little as possible. To this end, we

explore the possibility of typing processes using only the classic Denning restrictions

[DD77], which disallows an assignment l := e to a L variable if either e contains H

variables or if the assignment is within an if orwhile command whose guard contains

H variables. This would be in sharp contrast to prior works in secure information

54

(phrases) p ::= e | c
(expressions) e ::= x | n | e1 + e2 | . . .
(commands) c ::= done | x := e |

send(a, e) |
receive(a, x) |
if e then c1 else c2 |
while e do c | c1; c2

(variables) x, y, z, . . .
(channel ids) a, b, . . .
(process ids) i, j, . . .

Figure 4.3: Abstract language syntax

flow for concurrent programs such as [SV98, SS00, Smi06, FC08] which have required

severe restrictions to prevent H variables from affecting the ordering of assignments

to shared memory. Our language, being based on message passing rather than

shared memory, is much less dependent on timing and the behavior of the scheduler.

Indeed, it turns out that our distributed systems are observationally deterministic

which means that, despite our use of a purely nondeterministic process scheduler,

the final result of a program is uniquely determined by the initial memories.

Language syntax. Formally, the language syntax (Figure 4.3) is that of the

simple imperative language except that processes are added to the language and

they may send or receive messages from other processes. This language was first

published in [AS09]. In the syntax there are three types of identifiers: variables,

for which we use metavariables x, y, and z; channel identifiers, for which we use

metavariables a, and b; and process identifiers, for which we use metavariables i and

j; metavariable n ranges over integer literals. As in the previous chapter command

done is the terminated command also, integers are the only values; we use 0 for

false and nonzero for true2.

2Again, we can now code “if e then c” by “if e then c else done”.

55

Semantics of processes (−→). Each process can refer to its local memory µ,

which maps variables to integers, and to the global network memory Φ, which maps

channel identifiers to lists of messages currently waiting to be received; we start

execution with an empty network memory Φ0 such that Φ0(a) = [], for all a. Thus

we specify the semantics of a process via judgments of the form

(c, µ,Φ)−→(c′, µ′,Φ′).

We use a standard small-step semantics with the addition of rules for the send and

receive commands; the rules are shown in Figure 4.4. In the rules, we write µ(e) to

denote the value of expression e in memory µ. The rule for send(a, e) updates the

network memory by adding the value of e to the end of the list of messages waiting

on channel a. The rule for receive(a, x) requires that there be at least one message

waiting to be received on channel a; it removes the first such message and assigns

it to x.

Semantics of distributed systems (=⇒). We model a distributed system as a

function ∆ that maps process identifiers to pairs (c, µ) consisting of a command and

a local memory. A global configuration then has the form (∆,Φ), and rule globals

(Figure 4.4) defines the purely nondeterministic behavior of the process scheduler,

which at each step can select any process that is able to make a transition; globals

says that if a thread can make a transition to a new configuration then the complete

distributed system transitions to a new global configuration containing the new state

of the local thread. The Type System. Figure 4.5 shows the type system of the

abstract language; its rules use an identifier typing Γ that maps identifiers to types.

The typing rules enforce only the Denning restrictions [DD77]; in particular notice

that we allow the guards of while loops to be H . Channels are restricted to carrying

messages of one security classification from a specific process i to a specific process j

56

(updates) x ∈ dom(µ)
(x := e, µ,Φ)−→(done, µ[x := µ(e)],Φ)

(if s) µ(e) 6= 0
(if e then c1 else c2, µ,Φ)−→(c1, µ,Φ)

µ(e) = 0
(if e then c1 else c2, µ,Φ)−→(c2, µ,Φ)

(whiles) µ(e) = 0
(while e do c, µ,Φ)−→(done, µ,Φ)

µ(e) 6= 0
(while e do c, µ,Φ)−→(c;while e do c, µ,Φ)

(composes) (c1, µ,Φ)−→(done, µ′,Φ′)
(c1; c2, µ,Φ)−→(c2, µ

′,Φ′)

(c1, µ,Φ)−→(c′1, µ
′,Φ′) c′1 6= done

(c1; c2, µ,Φ)−→(c′1; c2, µ
′,Φ′)

(send s) Φ(a) = [m1, · · · , mk] k ≥ 0
(send(a, e), µ,Φ)−→(done, µ,Φ[a := [m1, . . . , mk, µ(e)]])

(receives) Φ(a) = [m1, . . . , mk] k ≥ 1
(receive(a, x), µ)−→(done, µ[x := m1],Φ[a = [m2, . . . , mk]])

(dones) (done, µ,Φ)−→(done, µ,Φ)

(global s) ∆(i) = (c, µ)
(c, µ,Φ)−→(c′, µ′,Φ′)
(∆,Φ)=⇒(∆[i := (c′, µ′)],Φ′)

Figure 4.4: Abstract language semantics

and accordingly are typed Γ(a) = τ chi,j where τ is the security classification of the

data that can travel in the channel, i is the source process and j is the destination

process. So to enable full communications between processes i and j we need four

channels with types H chi,j, H chj,i, L chi,j, and L chj,i. In a typing judgment

Γ, i ⊢ c : τ cmd

57

(sec) τ ::= H | L

(phrase) ρ ::= τ | τ var | τ cmd | τ chi,j

(base) L ⊆ H

(cmd) τ ⊆ τ ′

τ ′ cmd ⊆ τ cmd

(reflex) ρ ⊆ ρ

(trans) ρ1 ⊆ ρ2 ρ2 ⊆ ρ3
ρ1 ⊆ ρ3

(subsump) Γ, i ⊢ p : ρ1 ρ1 ⊆ ρ2
Γ, i ⊢ p : ρ2

(donet) Γ, i ⊢ done : H cmd

(int t) Γ, i ⊢ n : L

(rval t) Γ(x) = τ var
Γ, i ⊢ x : τ

(update t) Γ(x) = τ var Γ, i ⊢ e : τ
Γ, i ⊢ x := e : τ cmd

(plus t) Γ, i ⊢ e1 : τ Γ, i ⊢ e2 : τ
Γ, i ⊢ e1 + e2 : τ

(if t) Γ, i ⊢ e : τ Γ, i ⊢ c1 : τ cmd Γ, i ⊢ c2 : τ cmd
Γ, i ⊢ if e then c1 else c2 : τ cmd

(whilet) Γ, i ⊢ e : τ Γ, i ⊢ c1 : τ cmd
Γ, i ⊢ while e do c : τ cmd

(composet) Γ, i ⊢ c1 : τ cmd Γ, i ⊢ c2 : τ cmd
Γ, i ⊢ c1; c2 : τ cmd

(send t) Γ(a) = τ chi,j Γ, i ⊢ e : τ
Γ, i ⊢ send(a, e) : τ cmd

(receivet) Γ(a) = τ chj,i Γ(x) = τ var
Γ, i ⊢ receive(a, x) : τ cmd

Figure 4.5: Abstract language type system

58

the process identifier i specifies to which process command c belongs; this is used

to enforce the rule that only process i can send on a channel with type τ chi,j or

receive on a channel with type τ chj,i. We therefore say that a distributed system

∆ is well-typed if ∆(i) = (c, µ) implies that Γ, i ⊢ c : τ cmd for some τ .

Language Soundness. We now argue soundness properties for our language and

type system, starting with some standard properties, whose proofs are similar to

those in Chapter 3.

Lemma 4.1.1 (Simple Security) If Γ, i ⊢ e : τ , then e contains only variables of

level τ or lower.

Proof. By induction on the structure of e.

Lemma 4.1.2 (Confinement) If Γ, i ⊢ c : τ cmd, then c assigns only to variables

of level τ or higher, and sends or receives only on channels of level τ or higher.

Proof. By induction on the structure of c.

Lemma 4.1.3 (Subject Reduction) If Γ, i ⊢ c : τ cmd and (c, µ,Φ) −→ (c′, µ′,Φ′),

then Γ, i ⊢ c′ : τ cmd.

Proof. By induction on the structure of c.

4.2 Observational Determinism for Nondeterministic Sys-

tems

In this section we turn to more interesting properties of the language. We begin by

defining terminal global configurations; these are simply configurations in which all

processes have terminated:

59

Definition 4.2.1 A global configuration (∆,Φ) is terminal if for all i, ∆(i) =

(done, µi) for some µi.

Notice that we do not require that Φ be an empty network memory—we allow it to

contain unread messages.

Next we argue that, in spite of the nondeterminism of rule globals, our distributed

programs are observationally deterministic [ZM03], in the sense that executing any

distributed system multiple times can reach at most one terminal configuration.

Theorem 4.2.2 (Observational Determinism) Suppose that ∆ is well-typed and

that (∆,Φ)=⇒∗(∆1,Φ1) and (∆,Φ)=⇒∗(∆2,Φ2), where (∆1,Φ1) and (∆2,Φ2) are

terminal configurations. Then (∆1,Φ1) = (∆2,Φ2).

Proof. We begin by observing that the behavior of each process i is completely

independent of the rest of the distributed system, with the sole exception of its

receive commands. Thus if we specify the sequence of messages [m1, m2, . . . , mn]

that process i receives during its execution, then process i’s behavior is completely

determined. (Notice that the sequence [m1, m2, . . . , mn] merges together all of the

messages that process i receives on any of its input channels.)

We now argue by contradiction. Suppose that we can run from (∆,Φ) to two

different terminal configurations, (∆1,Φ1) and (∆2,Φ2). By the discussion above, it

must be that some process receives a different sequence of messages in the two runs.

So consider the first place in the second run (∆,Φ)=⇒∗(∆2,Φ2) where a process i

receives a different message than it does in the first run (∆,Φ)=⇒∗(∆1,Φ1). But for

this to happen, there must be another process j that earlier sent a different message

to i than it does in the first run. (Note that this depends on the fact that, in a

well-typed distributed system, any channel can be sent to by just one process and

received from by just one process). But for j to send a different message than in the

60

first run, it must itself have received a different message earlier. This contradicts

the fact that we chose the first place in the second run where a different message

was received.

Next we argue that well-typed distributed systems satisfy a termination-insensitive

noninterference property. (We certainly need a termination-insensitive property

since, under the Denning restrictions, H variables can affect termination.)

Definition 4.2.3 Two memories µ and ν are L-equivalent, written µ ∼L ν, if they

agree on the values of all L variables. Similarly, two network memories Φ and Φ′

are L-equivalent, also written Φ ∼L Φ′, if they agree on the values of all L channels.

4.3 Noninterference of Abstract Distributed Systems

Now we wish to argue that if we run a distributed system twice, using L-equivalent

initial memories for each process, then, assuming that both runs reach terminal

configurations, the final memories must be L-equivalent for each corresponding pair

of processes. Historically, a standard way to prove such a result is by establishing

some sort of low bisimulation between the two runs. However as we have seen, this

does not seem to be possible for our abstract language, because changing the values

of H variables can affect when receive commands are able to be executed. We now

present an example that illustrates the difficulty:

Example 4.3.1 Consider Figure 4.6 where hi, li are local variables of Process− i.

Suppose we run this program twice, using two L-equivalent memories for Process 1,

namely [h1 = 1, l1 = 0] and [h1 = 0, l1 = 0], and the same memory for Process 2,

[h2 = 0, l2 = 0]. Under the first memory, Process 1 may immediately send on channel

aH,1,2, which then unblocks Process 2 to do its receive and allows the assignment to

61

Process 1
if (h1) then

send(aH,1,2, 1)
else

done
l1 := 2;
send(aH,1,2, 2)

Process 2
receive(aH,1,2, h2);
l2 := 3

Figure 4.6: A difficult example for low bisimulation

Process 1
l1 := 2;

Process 2
l2 := 3

Figure 4.7: Stripped version of Figure 4.6

l2 to be done before l1. But under the second memory, Process 1 does not send on

channel aH,1,2 until after assigning to l1, which means that the assignment to l2 must

come after the assignment to l1. Thus the two runs are not low bisimilar.

Note that the two runs are fine with respect to noninterference, however—in both

cases we end up with l1 = 2 and l2 = 3. Because of this difficulty, we use a different

approach to noninterference, via the concepts of stripping and fast simulation. These

concepts were first developed in [SA07] and are used in Chapter 3 for the soundness

analysis of our core language. Intuitively, the processes in Figure 4.6 contain H

commands that are irrelevant to the L variables, except that they can cause delays.

If we strip them out, we are left with Figure 4.7 which shows what will happen

to the L variables if the system terminates. We therefore introduce a stripping

operation that eliminates all subcommands of type H cmd , so that the delays that

62

such subcommands might have caused are eliminated. More precisely, we have the

following definition:

Definition 4.3.1 Let c be a well-typed command. We define ⌊c⌋ = done if c has

type H cmd; otherwise, define ⌊c⌋ by

• ⌊x := e⌋ = x := e

• ⌊if e then c1 else c2⌋ = if e then ⌊c1⌋ else ⌊c2⌋

• ⌊while e do c⌋ = while e do ⌊c⌋

• ⌊send(a, e)⌋ = send(a, e)

• ⌊receive(a, x)⌋ = receive(a, x)

• ⌊c1; c2⌋ =

⌊c2⌋ if c1 : H cmd

⌊c1⌋ if c2 : H cmd

⌊c1⌋; ⌊c2⌋ otherwise

Also, we define ⌊µ⌋ to be the result of deleting all H variables from µ, and

⌊Φ⌋ to be the result of deleting all H channels from Φ. We extend ⌊·⌋ to well-

typed global configurations by ⌊(∆,Φ)⌋ = (⌊∆⌋, ⌊Φ⌋), where if ∆(i) = (c, µ), then

⌊∆⌋(i) = (⌊c⌋, ⌊µ⌋).

We remark that stripping as defined in [SA07] replaces subcommands of type H cmd

with skip; in contrast our new definition here aggressively eliminates such subcom-

mands. Also, stripping in [AS09] does not extend to memories and channels, note

that ⌊µ⌋ ∼L µ and ⌊Φ⌋ ∼L Φ.

Next, we would like to know that the stripping function is effective in that when

we strip a command all the high computation goes away and hence only L variables

and channels remain in c to affect computation. So we have a simple lemma:

63

Lemma 4.3.2 For any c, ⌊c⌋ contains only L variables and channels.

Proof. By induction on the structure of c. If c has type H cmd , then ⌊c⌋ = done,

which (vacuously) contains only L variables and channels. If c does not have type

H cmd , then consider the possible forms of c.

- If c is of the form x := e, then ⌊c⌋ = x := e. Since c does not have type

H cmd3, then by rule updatet we must have that x is a L variable and e : L,

which implies by Simple Security that e contains only L variables.

- If c is of the form send(a, e), then ⌊c⌋ = send(a, e). Since c does not have

type H cmd , then by rule send t, a is a L channel and e : L, which implies by

Simple Security that e contains only L variables.

- If c is of the form receive(a, x), then ⌊c⌋ = receive(a, x). Since c does not have

type H cmd , then by rule receivet, a is a L channel and x is a L variable.

- If c is of the form if e then c1 else c2, then ⌊c⌋ = if e then ⌊c1⌋ else ⌊c2⌋.

By rule if t, e : L, which implies by Simple Security that e contains only L

variables. And, by two applications of induction, ⌊c1⌋ and ⌊c2⌋ contain only

L variables and channels.

- If c is of the form while e do c1, then ⌊c⌋ = while e do ⌊c1⌋. By rule whilet,

e : L, which implies by Simple Security that e contains only L variables. And,

by induction, ⌊c1⌋ contains only L variables and channels.

Key result. The key result that we wish to establish in this Chapter is that

⌊(∆,Φ)⌋ can simulate (∆,Φ), up to the final values of L variables. To this end

3Meaning that no typing derivation in c ends with c : H cmd .

64

or

(∆,Φ)

R

R

⇓R⇓

(Υ,Ψ)

(Υ′,Ψ′)(∆′,Φ′)

Figure 4.8: Graphical representation of fast low Simulation

it suffices to extend the core theory of Chapter 3 to our language. Previously we

accomplished this result in [AS09] but the language and the theory were different,

making for a more complex theory and proofs. Originally, fast simulation was in-

troduced in [SA07] for a probabilistic setting and derived from the work of Baier,

Katoen, Hermanns, and Wolf on strong and weak simulation [BKHW05]. Now, re-

calling the definition of fast simulation: Definition 3.3.2 from Chapter 3, we define

fast low simulation under our nondeterministic environment.

Definition 4.3.3 (Fast Simulation) A binary relation R on global configurations

is a fast low simulation if whenever (∆,Φ)R (Υ,Ψ) then R is a fast simulation and

(∆,Φ) and (Υ,Ψ) agree on the values of the L variables and channels.

Figure 4.8 illustrates the definition of fast low simulation. Viewing our stripping

function ⌊·⌋ as a relation, we write (∆,Φ) ⌊·⌋ (Υ,Ψ) if ⌊(∆,Φ)⌋ = (Υ,Ψ). We are

now ready for the key theorem of this chapter which states that a stripped global

configuration is able to simulate the original one as far as the “low computation”.

Theorem 4.3.4 ⌊·⌋ is a fast low simulation.

Proof. Let (∆,Φ)⌊·⌋(Υ,Ψ) First, it is immediate from the definition of ⌊·⌋ that

(∆,Φ) and (Υ,Ψ) agree on the values of L variables and channels.

Next we must show that any move from (∆,Φ) can be matched by (Υ,Ψ) in

zero or one steps. Suppose that the move from (∆,Φ) involves a step on process i.

65

Then we must have ∆(i) = (c, µ), (c, µ,Φ)−→(c′, µ′,Φ′), and ∆′ = ∆[i := (c′, µ′)].

To show that (Υ,Ψ) can match this move in zero or one steps (note that (Υ,Ψ) =

(⌊∆⌋, ⌊Φ⌋) and that Υ(i) = (d, ν) = (⌊c⌋, ⌊µ⌋)) then, it suffices to show that either

Condition 1. (d, ν,Ψ) = (⌊c′⌋, ⌊µ′⌋, ⌊Φ′⌋) (match in place)

or

Condition 2. (d, ν,Ψ)−→(d′, ν ′,Ψ′) such that (d′, ν ′,Ψ′) = (⌊c′⌋, ⌊µ′⌋, ⌊Φ′⌋).

We argue this by induction on the structure of c. If c has type H cmd , then

d = done. Also, by Confinement we have µ ∼L µ′ and Φ ∼L Φ′, which implies

that ν = ⌊µ′⌋, and Ψ = ⌊Φ′⌋. And by Subject Reduction we have c′ : H cmd , which

implies that ⌊c′⌋ = done. So the move (c, µ,Φ)−→(c′, µ′,Φ′) is matched in zero

steps by (done, ν,Ψ) (note that d = done). This meets Condition 1. If c does not

have type H cmd , then consider the possible forms of c:

1. c is of the form x := e. Here d = x := e. By updatet, x : L var and e : L.

By updates, µ
′ = µ[x := µ(e)] and ν ′ = ν[x := ν(e)], and by Simple Security

ν(e) = µ(e), which implies that ν ′ = ν[x := ν(e)] = ⌊µ[x := µ(e)]⌋ = ⌊µ′⌋.

Hence the move (c, µ,Φ)−→(done, µ[x := µ(e)],Φ) is matched by the move

(d, ν,Ψ)−→(done, ν[x := ν(e)],Ψ). This meets Condition 2.

2. c is of the form send(a, e). Here d = send(a, e). By send t, a is a low

channel and e : L. By send s, Φ′(a) = [m1, . . . , mk, µ(e)] for some k and

Ψ′(a) = [m1, . . . , mk, ν(e)]. Also, by Simple Security, ν(e) = µ(e). Hence the

move (c, µ,Φ)−→(done, µ,Φ[a := [m1, . . . , mk, µ(e)]) is matched by the move

(d, ν,Ψ)−→(done, ν,Ψ[a := [m1, . . . , mk, ν(e)]). This meets Condition 2.

3. c is of the form receive(a, x). Here d = receive(a, x) By receivet, a is a low

channel and x : L var . By receives, (c, µ,Φ)−→(done, µ[x := m1],Φ[a :=

66

[m2, . . . , mk]]) (this is because the receive command is only executed if there

is a message waiting on the queue). Now by simple security, Ψ(a) = ⌊Φ⌋(a) =

Φ(a) = [m1, . . . , mk], where k ≥ 1. And by receives again, (d, ν,Ψ) −→

(done, ν[x := m1],Ψ[a := [m2, . . . , mk]]). Therefore, the move from (c, µ,Φ)

is matched by the move from (d, ν,Ψ) in one step. This meets Condition 2.

4. c is of the form if e then c1 else c2. Here d = if e then d1 else d2 where

d1 = ⌊c1⌋ and d2 = ⌊c2⌋. By rule if t, e : L and by Simple Security ν(e) = µ(e).

So if µ(e) 6= 0, then by first rule if s, (c, µ,Φ)−→(c1, µ,Φ). Then by the same

rule, (d, ν,Ψ) can match this move in one step: (d, ν,Ψ)−→(d1, ν,Ψ) This

meets Condition 2. If µ(e) = 0, then we have a similar result.

5. c is of the form while e do c1. Here d = while e do d1 where d1 = ⌊c1⌋. By

rule whilet, e : L and c1 cannot reach type H cmd . By Simple Security, ν(e) =

µ(e). So in case µ(e) 6= 0, then the move (c, µ,Φ)−→(c1;while e do c1, µ,Φ)

(by second rule whiles) is matched in one step by (d, ν,Ψ)−→ (d1;while e do d1, ν,Ψ)

(by the same rule). This meets Condition 2. When µ(e) = 0, then by two

applications of first rule whiles, the move (c, µ,Φ)−→(done, µ,Φ) is matched

in one step by the move (d, ν,Ψ)−→(done, ν,Ψ). This meets Condition 2.

Next we address the case when c is of the form c1; c2. First recall that under rule

composes, any move from (c1; c2, µ,Φ) results from a move (c1, µ,Φ)−→(c′1, µ
′,Φ′)

where c′1 may or may not be done. Depending on this, the transitions from c can

be:

(c1; c2, µ,Φ)−→(c2, µ
′,Φ′)

or

(c1; c2, µ,Φ)−→(c′1; c2, µ
′,Φ′)

Simulating (c, µ,Φ) we have (d, ν,Ψ) where d = ⌊c1; c2⌋, ν = ⌊µ⌋, and Ψ = ⌊Φ⌋.

67

Depending on the types of c1 and c2, d has three possible forms which we handle

separately.

1. First, if neither c1 nor c2 has type H cmd then d = ⌊c1⌋; ⌊c2⌋ = d1; d2 where

d1 = ⌊c1⌋ and d2 = ⌊c2⌋. By induction, the move (c1, µ,Φ)−→(c′1, µ
′,Φ′) can

be matched by (d1, ν,Φ) using either Condition 1 or Condition 2 above. We

now address each condition in turn.

(a) If Condition 1 is met on (c1, µ,Φ)−→(c′1, µ
′,Φ′); i.e., (d1, ν,Ψ) can match

the move of (c1, µ,Φ) in place, then (d1, ν,Ψ) = (⌊c′1⌋, ⌊µ
′⌋, ⌊Φ′⌋). Now

observe that d1 cannot be done because only H commands strip to done

and c1 cannot be typed H command. This implies that c′1 cannot have

type H cmd and in particular c′1 cannot be done. Hence the move from c

must be by the second rule composes, (c1; c2, µ,Φ)−→(c′1; c2, µ
′,Φ). Then,

(d, ν,Ψ) matches in place. This meets Condition 1.

(b) If Condition 2 is met on (c1, µ,Φ)−→(c′1, µ
′,Φ′); then the transition must

be matched by (d1, ν,Ψ)−→(d′1, ν
′,Ψ′) where (c′1, µ

′,Φ′)⌊·⌋(d′1, ν
′,Φ′). We

now consider three distinct cases for c′1:

i. If c′1 = done then the move from cmust be by the first rule composes:

(c1; c2, µ,Φ)−→(c2, µ
′,Φ′). Then, d can make a matching move using

first rule composes: (d1; d2, ν,Ψ) −→ (d2, ν
′,Ψ′) with (c′, µ′,Φ′) ⌊·⌋

(d′, ν ′,Φ′). Hence, condition 2 is met.

ii. If c′1 : H cmd but c′1 6= done, then the move from c must be by

the second rule composes: (c1; c2, µ,Φ) −→ (c′1; c2, µ
′,Φ′). But, d′1 =

done, hence, the move from d must be by the first rule composes:

(d1; d2, ν,Ψ)−→(d2, ν
′,Ψ′) with (c′1; c2, µ

′,Φ′)⌊·⌋(d2, ν ′,Ψ′). Hence,

condition 2 is met.

68

iii. If c′1 does not have type H cmd , then the move from c must be by

the second rule composes: (c1; c2, µ,Φ)−→(c′1; c2, µ
′,Φ′). Recalling

that by induction d′1 = ⌊c′1⌋ we must have that d′1 6= done. And

so the matching move from d must be by the second rule composes:

(d1; d2, ν,Ψ)−→(d′1; d2, ν
′,Ψ′), where (c′1; c2, µ

′,Φ′) ⌊·⌋ (d′1; d2, ν
′,Ψ′).

Hence, condition 2 is met.

2. Second, if c1 : H cmd then d = ⌊c1; c2⌋ = ⌊c2⌋ = d2. If the move from c is by

the first rule composes, then we must have (c1, µ,Φ)−→(done, µ′,Φ′), where

by Confinement µ ∼L µ′ and Φ ∼L Φ′. So the move (c1; c2, µ,Φ)−→(c2, µ
′,Φ′)

is matched in zero steps by (d2, ν,Ψ), where (c′1; c2, µ
′,Φ′)⌊·⌋(d2, ν,Ψ). This

meets Condition 1.

If instead the move from c is by the second rule composes, then we must have

(c1, µ,Φ)−→(c′1, µ
′,Φ′), where by Confinement µ ∼L µ′ and Φ ∼L Φ′, and by

Subject Reduction c′1 : H cmd . Hence the move (c1; c2, µ,Φ)−→(c′1; c2, µ
′,Φ′)

is again matched in zero steps by (d2, ν,Ψ), where (c′1; c2, µ
′,Φ′)⌊·⌋(d2, ν,Ψ).

This meets Condition 1.

3. Third, if c2 : H cmd then d = ⌊c1; c2⌋ = ⌊c1⌋ = d1. In this case the argument

is essentially the same as in the first case (a).

We are now ready to use these results in establishing our termination-insensitive

noninterference result:

Theorem 4.3.5 Let ∆1 be a well-typed distributed program and let ∆2 be formed

by replacing each of the initial memories in ∆1 with a L-equivalent memory. Let

Φ1 and Φ2 be L-equivalent channel memories. Suppose that (∆1,Φ1) and (∆2,Φ2)

69

⌊·⌋

⇓∗

(∆2,Φ2)

(∆′
2,Φ

′
2)(∆′

1,Φ
′
1)

⇓∗

(∆1,Φ1)

⇓∗

(⌊∆′
1⌋, ⌊Φ

′
1⌋)

(⌊∆1⌋, ⌊Φ1⌋)

⌊·⌋

⌊·⌋⌊·⌋

Figure 4.9: Noninterference of distributed systems

can both execute successfully, reaching terminal configurations (∆′
1,Φ

′
1) and (∆′

2,Φ
′
2)

respectively. Then the corresponding local memories of ∆′
1 and ∆′

2 are L-equivalent,

and Φ′
1 ∼L Φ′

2.

Proof. By definition, (∆1,Φ1)⌊·⌋⌊(∆1,Φ1)⌋ and (∆2,Φ2)⌊·⌋⌊(∆2,Φ2)⌋. Hence, since

⌊·⌋is a fast low simulation, we know that ⌊(∆1,Φ1)⌋ and ⌊(∆2,Φ2)⌋ can also execute

successfully, and can reach terminal configurations whose local memories are L-

equivalent to the corresponding memories of ∆′
1 and ∆′

2. Moreover, by Theorem 4.2.2

we know that those terminal configurations are unique.

But ⌊(∆1,Φ1)⌋ is identical to ⌊(∆2,Φ2)⌋, since neither contains H variables or

channels. Hence they must reach the same terminal configuration. It follows that

the corresponding local memories of ∆′
1 and ∆′

2 are L-equivalent and that Φ′
1 ∼L Φ′

2.

Figure 4.9 illustrates the proof idea for this theorem. Running a distributed system

twice and assuming that for each process the local memories are low equivalent4

and that the two executions reach terminal configurations, we must have that the

stripped version reaches a terminal configuration (⌊∆′
1⌋, ⌊Φ

′
1⌋) at least as fast as

the original executions; also, since the language is observationally deterministic

(⌊∆′
1⌋, ⌊Φ

′
1⌋) must be unique. So we are able to reestablish the bridge and it follows

that corresponding final memories and channels must be low equivalent.

4Note that initially all channels are empty.

70

4.4 Towards a Concrete Implementation

In this section we explore the implementation of our distributed language in a con-

crete setting over a public network, where external adversary (Eve) is able to see but

not modify the traffic and where she is not able to measure time intervals (although

she can observe messages in the order that they are sent). We present a series

of attacks on the distributed systems that help us define minimal confidentiality

requirements on the network traffic, propose a middleware (similar to the CSMA

protocol) that handles channels and message transmission, and sketch a proof of

soundness for such a system. This exploration was first published in our FAST-09

paper [AS09].

The abstract language of Chapter 4 requires private channels for all communica-

tions which limits its applicability to secure settings, but we would like to implement

our language in a more practical setting where communications between programs

happen via a public network. We would like a setting like a wireless LAN but then

we are faced with significant challenges to ensure confidentiality. Eavesdroppers

can easily see all messages between processes; what would it take to implement our

language for distributed systems in a wireless environment? Clearly, secret data

cannot be transmitted in a wireless LAN with any expectation of confidentiality

as any computer with a receiver can get all the data that has been transmitted.

Hence our first requirement, we need cryptography to hide the information being

transmitted. Asymmetric cryptography seems to be the appropriate style for our

setting. We should keep in mind that the introduction of cryptography means that

from an information theoretic perspective the language is completely insecure, as

encrypted data completely leaks its value. Although we expect that recovering the

71

-∆4-

Process 1
if (h1 is even) then run a long time
send(aH,1,7, 1)

Process 2
if (h2 is odd) then run a long time
send(aH,2,8, 0)

-∆5-

Process 1
if (h1 is even) then

C
?
← Epk(someMsg);

send(aL,1,3, C)
send(aL,1,3, C)

Figure 4.10: Attacks (second wave)

secrets from the ciphertext will take too long and thus becomes unfeasible for the

attacker.

Having decided on cryptography to hide the information that is being transmit-

ted, we really want to encrypt only what is necessary to maintain the soundness of

the distributed system, since encryption and decryption are expensive operations. In

a wireless LAN, communications happen via electromagnetic signals which contain

not only the message (payload) but also other information like source, destination,

and data classification (header). Clearly we have to encrypt the payload but do we

have to encrypt the header? In fact we do, for otherwise the language confidentiality

would be lost as exemplified in ∆4 of Figure 4.10. The channel used in both pro-

cesses is a high channel (encrypted payload) yet an eavesdropper can still discern

the value of the least bit of the secret h1 by looking in the header of each packet for

which process sends first; if Process 1 sends first then h1 is odd and the least bit is 1.

Therefore our second requirement: we have to encrypt the header and the payload

of packets on high channels to prevent the leakage of secret information. Yet we are

not done because surprisingly, this attack works even if the message sent is public

and it is being sent on a public channel. Consider ∆4 again and let’s assume that

we are encrypting all headers (secret and public) and the secret payloads, but we

are allowing the public data to be transmitted in the clear. This seems reasonable

72

enough since the adversary will get all public data at the end of the execution. Nev-

ertheless, if we observe a public value of 1 being transmitted first we will know with

high probability that the least bit of h1 is 1. Hence our third requirement: we have

to encrypt all transmitted data.

We remark that if we had an active adversary which was able to drop packets,

modify them and resend them, in addition to the attacks that we have seen she could

modify packets to leak information and to affect the integrity of the distributed

system. For example if the packet header was not encrypted she could change the

packet classification from H to L thereby declassifying the payload which could

cause the packet to be received by a low channel buffer in the receiving process.

Then she could wait until the end of the execution to pick up the leaked secret from

the process’ public memory.

This distinction may play a role in deciding what kind of security property will

be necessary in our encryption scheme. Specifically a passive adversary might only

require IND-CPA security while the active adversary will definitely require IND-

CCA security. As an illustration of this distinction consider the following variation

of the Warinschi attack on the Needham-Schroeder-(Lowe) protocol [War03] where

an IND-CPA scheme has the flaw where there is a function C ′ := f(C) that takes an

encrypted plaintext (like a packet header) and returns the ciphertext of an identical

plaintext but with a certain location within it changed to L. This would not affect

the security of the encryption scheme in any other way i.e., an adversary would

not be able to know anything about the content of the ciphertext but by simply

substituting the header of any packet with C ′ and re-sending it, the adversary would

be able to declassify the payload of the message.

But continuing with our analysis, are we done? We have decided to encrypt all

data that is transmitted in the network, yet it is not enough to ensure confidentiality.

73

-∆6-

Process 1
send(aL,1,2, 0)
if (h1 is even) then delay 1 sec;
send(aL,1,2, 0)

-∆7-

Process 1
if (h1 is even) then

send(aH,1,2, 0)

Figure 4.11: Attacks (third wave)

Consider adversary ∆5 of Figure 4.10, it encrypts a message and sends it two times

if a secret is even. Meanwhile Eve scans every transmission waiting for two identical

ciphertexts; if they are found she knows with high probability that the least bit

of h1 is 1, if all ciphers are distinct, it is 0. Therefore our fourth requirement: all

transmitted data must be composed of freshly generated ciphertexts to ensure the

confidentiality of our distributed systems.

Finally, there are two more attacks that we need to consider. The first one is

the classical timing attack. If we know how long a typical execution step takes

and can measure time intervals then we can leak information. ∆6 of Figure 4.11

exemplifies this attack. If Eve is able to measure the time interval between the two

transmissions she will have the value of the least bit of h1. A related timing attack is

to count the number of message transmitted as in ∆7 of Figure 4.11. In this attack,

the last bit of h1 is leaked by the transmission of one or zero packets. These attacks

can be generalized to changing the statistics of packet transmission; for example,

one can conceive an attack where the time distribution for packet transmission is

uniform to leak a 0 and χ-square or normal for a 1.

However, this area of study seems out of scope for us as it is addressed in other

areas of research. For example recently, Köpf and Dürmuth [KD09] use Shannon

entropy to bound the leakage of timing and side channel attacks under the input

blinding and bucketing countermeasures. The advantage of this work over more

traditional approaches is that it carries provable security guarantees both using

74

Shannon-entropy and min-entropy [KS10] to bound the leakage under this coun-

termeasure. Other more traditional solutions include imposing a super-density of

packet transmission at regular intervals, where only some of the packets are real

messages. This might eliminate the problem but significantly increase the net-

work bandwidth utilization. A solution on the same vein could be the NRL-Pump

[KM93a, KMC05] which is currently available at the local (government-owned) elec-

tronics shop. The pump obfuscates Eve’s ability to measure the time between mes-

sages. It does this by inserting random delays based on an adaptive mechanism that

adjusts the delays based on network traffic statistics. However, the pump cannot

prevent timing channels based on the order of distinguishable messages and does

not come with security guarantees.

To summarize, to ensure confidentiality of our distributed system, we not only

have to somehow hide the meaning of messages, but also hide anything in a message

that makes it distinguishable to Eve. Obviously, this includes payload, but also

the message header, since the source or destination of a message can be used to

distinguish it from another. Although L values are public, they cannot be seen

within the network traffic. This is not a problem when computation happens within

a processor (like in some multithreaded environments) because it is not reasonable

that Eve would have access to the public memory in real time.

Soundness: Next we sketch a possible way to argue a computational noninter-

ference property for our concrete language:

Random Transfer Language Definition and Soundness: First, we should be

able to move our language, at the most basic level, from a nondeterministic

to a probabilistic setting by constructing a subset language which we will call

Random Transfer Language, and prove PNI on it. The PNI property on this

75

language shall establish that if we allow only fresh-random traffic, the language

is safe and sound.

Message Transfer Language Definition and Soundness: Then, we should be

able to construct a Message Transfer Language and prove CNI on it. This

language simply has the regular send command encrypt its payload before

transmission on a public channel but keeps private channels for transmission

of header information.

Header Transfer Language Definition and Soundness: Next, we should be

able to construct Header Transfer Language and prove CNI on it. In this lan-

guage the send command encrypts its header before transmission, but keeps

private channels for transmission of the payload.

Hybrid Cryptographic Argument: Finally, we should be able to argue that

since the Message and Header Transfer languages both satisfy CNI, the com-

bination also should via a hybrid cryptographic argument.

In this chapter we extended the core language of Chapter 3 to an abstract lan-

guage for distributed systems under a nondeterministic scheduler. We have main-

tained the fairly nonrestrictive type system for individual processes while keeping

the noninterference property on it. As far as we know, this is a new result in the area

of Secure Information Flow. While in the past, noninterference under a nondeter-

ministic scheduler has not meant that the concrete implementation of the language

would be secure, we are fairly certain that the implementation of this language as

detailed in Section 4.4 would be (although this is not shown).

76

CHAPTER 5

PROBABILISTIC SIMULATION AND NONTERMINATION.

So far we have not restricted our languages beyond the Denning restrictions and

our results have been valid as long as the executions reach terminal states, although

later on (when we deal with cryptographic languages) our results will only apply

to polynomial-time programs. We now focus on the behavior of potentially nonter-

minating programs looking to quantify the effects of nontermination. In this work,

which is a revised version of [SA11], we extend the core language of Chapter 3 to

use a probabilistic semantics by the introduction of a random assignment operation.

We find that the nontermination of program executions can be used to leak infor-

mation even when the program meets the Denning Restrictions. Then, we reason

about the behavior of nonterminating programs and develop a property that says

that the probability of a nonterminating execution must be conserved in that it

must come directly from the probabilities of the execution reaching other terminal

configurations. We call this the bucket property . We then extend the core theory

of Chapter 3 to a probabilistic setting by introducing fast probabilistic simulation

on Markov chains in general and further, fast low probabilistic simulation on the

Markov chains resulting from the execution of our extended language under prob-

abilistic semantics. Finally, we provide some applications of the theory including a

proof of probabilistic noninterference on our random assignment language.

In this setting, fast simulation and fast low simulation are now probabilistic

concepts. Also, noninterference becomes probabilistic noninterference which says

roughly, that in the execution of a program the final values of L variables are in-

dependent of the initial values of H variables [VS99]. This is formalized using the

concept of low equivalence of memories which we recall from Chapter 3:

77

Definition 5.0.1 Two memories µ and ν are L-equivalent, written µ ∼L ν, if they

agree on the values of all L variables.

The idea is that if initial memories µ and ν are low equivalent, then running c under

µ should be (in some sense) equivalent to running c under ν, as far as L variables

are concerned. But the possibility of nontermination causes complications, because

the Denning restrictions allow programs whose termination behavior depends on the

values of H variables. For example, the program:

while h = 1 do done

where h is a H variable, might terminate under µ and loop under ν. One reaction

to the termination issue is to say that further restrictions are needed. A number

of studies have proposed forbidding H variables in the guards of while loops (e.g.

[VS97]) or forbidding assignments to L variables that sequentially follow commands

whose termination depends on H variables (e.g. [Smi06]). But such additional

restrictions may in practice be overly stringent, making it difficult to write use-

ful programs. For this reason, practical secure information-flow languages like Jif

[MCN+06] have chosen not to impose extra restrictions to control termination leaks.

In this chapter, therefore, we study the behavior of potentially nonterminating

programs typed just under the Denning restrictions. To be able to make quantitative

statements about the effects of nontermination, we consider a probabilistic language.

In such a language, we would like to achieve probabilistic noninterference [VS99],

which asserts that the probability distribution on the final values of L variables is

independent of the initial values of H variables.

Example 5.0.1 Consider the program in Figure 5.1. Note that t
?
← {0, 1} is a ran-

dom assignment that assigns either 0 or 1 to t, each with probability 1/2. Assuming

that h is H and t and l are L, this program satisfies the Denning restrictions and

78

t
?
← {0, 1};

if t = 0 then (
while h = 1 do skip;
l := 0

)
else (

while h = 0 do skip;
l := 1

)

Figure 5.1: A random assignment program

it is well-typed under the typing rules that we will present in Section 5.1. But, if

h = 0, then this program terminates with l = 0 with probability 1/2 and fails to

terminate with probability 1/2. And if h = 1, then it terminates with l = 1 with

probability 1/2 and fails to terminate with probability 1/2. Thus this program does

not satisfy probabilistic noninterference.

What goes wrong? Intuitively, the program is “trying” to set l to either 0 or 1,

each with probability 1/2, regardless of the value of h. But the while loops, whose

termination depends on the value of h, sometimes prevent assignments to l from

being reached. As a result, the probabilities of some of the terminal states of the

execution (with specific values of l) are lowered, because the paths that would have

led to them become infinite loops. This suggests, that if the probability of nonter-

mination of a well-typed program is small, then it will “almost” satisfy probabilistic

noninterference.

To make these intuitions precise, we consider a thought experiment. For any

well-typed program c, we define a “stripped” version of c, denoted by ⌊c⌋. In ⌊c⌋,

certain subcommands of c (namely, those that make no assignments to L variables)

are removed. For example, the stripped version of the program in Figure 5.1 is

shown in Figure 5.2. We emphasize that stripping is for us a thought experiment—it

79

t
?
← {0, 1};

if t = 0 then
l := 0

else
l := 1

Figure 5.2: Stripped version of the program

is not something that we would actually use in an implementation, but rather it is

a means to understand a program’s behavior.

The major technical effort of this chapter is to prove a precise relationship be-

tween the behavior of a well-typed program c and of its stripped version ⌊c⌋. We

will show that the only effect of the stripping operation is to boost the probabilities

of certain L outcomes by lowering the probability of nontermination. For example,

consider the program in Figure 5.1 when h = 0. Stripping boosts the probability

of terminating with l = 1 from 0 up to 1/2 by lowering the probability of nonter-

mination from 1/2 down to 0; it leaves the probability of terminating with l = 0

unchanged at 1/2.

More precisely, we will prove in Theorem 5.4.3 that the probability that c ter-

minates with certain values for its L variables is always less than or equal to the

corresponding probability for ⌊c⌋. To visualize this theorem, imagine that the results

of running c and ⌊c⌋ are shown as two sequences of buckets, one for each possible

final value of their L variables, and one bucket each to represent nontermination.

The probability of each outcome is indicated by the amount of water in each bucket;

there is a total of one gallon of water among all the buckets in each set of buckets.

Suppose that c’s buckets look like this:

80

nontermination l = 0 l = 1 l = 2

. . .

Then Theorem 5.4.3 tells us that ⌊c⌋’s buckets are gotten simply by pouring some

of the water from c’s nontermination bucket into some of the other buckets:

nontermination l = 0 l = 1 l = 2

. . .

Note that the amount of water moved is defined by c and that no water moves from

any terminal bucket.

The need for Theorem 5.4.3 first arose in [SA06] where it was claimed without

proof. Furthermore, it was claimed there that the proof could be done using a strong

probabilistic simulation as defined by Jonsson and Larsen [JL91]. But that claim

was incorrect; strong simulation turns out to be too restrictive for this purpose and

while weak simulation [BKHW05] could be used for our result here, it is needlessly

complex for our setting. For this reason, we introduced a new simulation in [SA07],

which we call fast simulation, refine it here as part of our extended theory, and show

that it can be used in proving Theorem 5.4.3.

Theorem 5.4.3 gives us a way of bounding the effect of nontermination. For

example, if c’s nontermination bucket is empty, then ⌊c⌋’s buckets are identical to

c’s, because there is no water to pour! More generally, we prove in Theorem 5.5.2

that if a well-typed program c fails to terminate with probability at most p, then

c’s deviation from probabilistic noninterference is at most 2p.

81

(phrases) p ::= e | c
(expressions) e ::= x | n | e1 + e2 | . . .
(commands) c ::= done | x := e |

x
?
← D |

if e then c1 else c2 |
while e do c | c1; c2

(variables) x, y, z, . . .

Figure 5.3: Probabilistic language syntax

5.1 A Probabilistic Language

In this section, we extend the core language of Chapter 3 to a probabilistic setting.

Previously, we designed a similar language in [SA06]. Formally, the language syntax

(Figure 5.3) is that of the simple imperative language except that we introduce a

random assignment command (we will see that the addition of this simple command

greatly changes the language semantics and significantly increases the complexity of

the theory). In the syntax there is only one type of identifier variable, for which we

use metavariables x, y, and z; metavariable n ranges over integer literals. Integers

are the only values; we use 0 for false and nonzero for true. As in previous chapters

we have replaced the traditional skip command with a done command instead;

done can be used in much the same way as skip and (as will be seen below) it is

also used to represent a terminated command in a configuration.

The command x
?
← D is a random assignment; here D ranges over some set

of probability distributions on the integers. In examples, we use notation like

x
?
← {0, 1, 2} to denote a random assignment command that assigns either 0, 1,

or 2 to x, each with equal probability. Please note that the language allows random

assignments but not random expressions ; this lets us use simpler semantics and does

not limit the language’s computational power.

82

A program c is executed under a memory µ, which maps identifiers to integers.

We assume that expressions are total and evaluated atomically, and we write µ(e)

to denote the value of expression e in memory µ. In our semantics, a configuration

is a pair (c, µ) where c is a command and µ is a memory. Note that terminal

configurations are written as (done, µ) in our semantics. We remark that the more

common semantic approach is to have both non-terminal configurations (c, µ) and

also terminal configurations µ, but this tends to lead to a proliferation of cases in

proofs; it is therefore simpler to have only configurations of the form (c, µ).

Probabilistic semantics: to model the language with the new random assignment

command, the standard transition relation on configurations, which we use on the

core theory, is not adequate; the semantics needs to be extended with probabilities—

we write (c, µ)
p
−→(c′, µ′) to indicate that the probability of going from configuration

(c, µ) to configuration (c′, µ′) is p. The semantic rules are given in Figure 5.4. They

define a Markov chain [Fel68] on the set of configurations. Notice that terminal

configurations (done, µ) are absorbing states in the Markov chain.

The type system for this language simply enforces the Denning restrictions. Here

are the types we will use:

(data types) τ ::= L | H

(phrase types) ρ ::= τ | τ var | τ cmd

Typing judgments have the form Γ ⊢ p : ρ, where Γ is an identifier typing that maps

each variable to a type of the form τ var . In this chapter Γ is fixed throughout.

Intuitively, τ var is the type of variables that store information of level τ , while

τ cmd is the type of commands that assign only to variables of level τ or higher.1

The typing and subtyping rules are given in Figures 5.5. The rules are the same as

1Again as in Chapter 3, this implies that command types obey a contravariant sub-
typing rule.

83

(updates) x ∈ dom(µ)

(x := e, µ)
1
−→(done, µ[x := µ(e)])

(randoms) x ∈ dom(µ) D(v) > 0

(x
?
← D, µ)

D(v)
−→(done, µ[x := v])

(if s) µ(e) 6= 0

(if e then c1 else c2, µ)
1
−→(c1, µ)

µ(e) = 0

(if e then c1 else c2, µ)
1
−→(c2, µ)

(whiles) µ(e) = 0

(while e do c, µ)
1
−→(done, µ)

µ(e) 6= 0

(while e do c, µ)
1
−→(c;while e do c, µ)

(composes) (c1, µ)
p
−→(done, µ′)

(c1; c2, µ)
p
−→(c2, µ

′)

(c1, µ)
p
−→(c′1, µ

′) c′1 6= done

(c1; c2, µ)
p
−→(c′1; c2, µ

′)

(dones) (done, µ)
1
−→(done, µ)

Figure 5.4: Probabilistic semantics

those in Chapter 3, except for the new rule randomt for random assignment. Rule

randomt says that a random assignment can be done to any variable x, but if x

has type τ var , then the assignment gets type τ cmd ; this type is used to prevent

improper implicit flows.

Now we have the usual Simple Security, Confinement, and Subject Reduction

properties for this language:

Lemma 5.1.1 (Simple Security) If Γ ⊢ e : τ , then e contains only variables of

level τ or lower.

Proof. By induction on the structure of e.

84

(base) L ⊆ H

(cmd) τ ⊆ τ ′

τ ′ cmd ⊆ τ cmd

(reflex) ρ ⊆ ρ

(trans) ρ1 ⊆ ρ2 ρ2 ⊆ ρ3
ρ1 ⊆ ρ3

(subsump) Γ ⊢ p : ρ1 ρ1 ⊆ ρ2
Γ ⊢ p : ρ2

(donet) Γ ⊢ done : H cmd

(int t) Γ ⊢ n : L

(rval t) Γ(x) = τ var
Γ ⊢ x : τ

(updatet) Γ(x) = τ var Γ ⊢ e : τ
Γ ⊢ x := e : τ cmd

(randomt) Γ(x) = τ var

Γ ⊢ x
?
← D : τ cmd

(plus t) Γ ⊢ e1 : τ Γ ⊢ e2 : τ
Γ ⊢ e1 + e2 : τ

(if t) Γ ⊢ e : τ Γ ⊢ c1 : τ cmd Γ ⊢ c2 : τ cmd
Γ ⊢ if e then c1 else c2 : τ cmd

(whilet) Γ ⊢ e : τ Γ ⊢ c : τ cmd
Γ ⊢ while e do c : τ cmd

(composet) Γ ⊢ c1 : τ cmd Γ ⊢ c2 : τ cmd
Γ ⊢ c1; c2 : τ cmd

Figure 5.5: Probabilistic language type system

Lemma 5.1.2 (Confinement) If Γ ⊢ c : τ cmd, then c assigns only to variables

of level τ or higher.

Proof. By induction on the structure of c.

85

Lemma 5.1.3 (Subject Reduction) If Γ ⊢ c : τ cmd and (c, µ)
p
−→(c′, µ′) for

some p > 0, then Γ ⊢ c′ : τ cmd.

Proof. By induction on the structure of c.

But, as discussed at the beginning of this chapter, well-typed programs need not

satisfy probabilistic noninterference. This is because changes to H variables can

result in infinite loops that block subsequent assignments to L variables, affecting

the probabilities of different L outcomes. Therefore as we seek a relationship between

the program’s full execution and its “low execution”, i.e., its execution as far as the

low variables is concerned, we now develop key results in the theory of probabilistic

simulation that will be needed later.

5.2 Probabilistic Simulation for Transition Systems

In this chapter, we discuss the theory of probabilistic simulation and bisimulation

in the abstract setting of discrete time Markov Chains.

Definition 5.2.1 (DTMC) A (discrete-time)Markov chain [Fel68] is a pair (S,P)

where

• S is a countable set of states, and

• P : S × S → [0, 1] is a probability matrix satisfying
∑

t∈S P(s, t) = 1 for all

s ∈ S.

If P(s, t) > 0, then we say that t is a successor of s. Also, for T ⊆ S, we write

P(s, T) to denote
∑

t∈T P(s, t), the probability of going in one step from s to a state

in T .

86

A classic equivalence relation on Markov chains is probabilistic bisimulation , due to

Kemeny and Snell [KS60] and Larsen and Skou [LS91].

Definition 5.2.2 (Strong Bisimulation) Let R be an equivalence relation on S.

R is a strong bisimulation if whenever sRt we have P(s, T) = P(t, T) for every

equivalence class T of R.

Both strong and weak versions of bisimulation have been applied fruitfully in secure

information flow analysis, for example by Gray [Gra90], Sabelfeld and Sands [SS00],

and Smith [Smi06]. The basic idea is that a secure program should behave (in some

sense) “indistinguishably” when run under two low-equivalent initial memories; this

indistinguishability can be formalized as a bisimulation.

However, in this chapter, we apply instead non-symmetric probabilistic simula-

tion relations, explored earlier by Jonsson and Larsen [JL91] and Baier, Katoen,

Hermanns, and Wolf [BKHW05]. Roughly speaking, a binary relation R is a strong

simulation if whenever sRt and s has a successor s′, t has a “matching” successor

t′ that simulates s′ (i.e. s′Rt′). But in the probabilistic setting, we must also make

sure that the probabilities are preserved. Suppose for example that P(s, s′) = p.

Then t must be able to match that much probability. But t need not have a single

successor t′ such that P(t, t′) = p. Instead, it is enough for t to have several suc-

cessors, each simulating s′, such that the total probability is p. However, in doing

this simulation we must not “double count” t’s probabilities—for example, if s goes

to s′ with probability 1/3 and t goes to t′ with probability 1/2, then if we use t′ to

match the move to s′ we must remember that 1/3 of t′’s probability is “used up”,

leaving just 1/6 to be used in matching other moves of s. These considerations lead

to what is called a weight function ∆ to specify how the probabilities are matched

up, giving the following definition (adapted from Definition 16 of [BKHW05]):

87

Definition 5.2.3 (Strong Simulation) Let R be a binary relation on S. R is a

strong simulation if, whenever sRt, there exists a function ∆ : S × S → [0, 1] such

that

1. ∆(s′, t′) > 0 implies that s′Rt′,

2. P(s, s′) =
∑

u∈S ∆(s′, u) for all s′ ∈ S,

3. P(t, t′) =
∑

u∈S ∆(u, t′) for all t′ ∈ S.

For our exploration of the stripping operation ⌊·⌋ in Section 5.3, however, it turns

out that strong simulation isn’t quite what we want, because it does not allow the

simulating state t to run “faster” than the simulated state s. The issue is that s could

make “insignificant” moves to states that are already simulated by t; in this case t

shouldn’t need to make a matching move. Such “insignificant” moves are allowed by

the more flexible notion of weak simulation in Definition 34 of [BKHW05]. But their

definition also allows t to make “insignificant” moves, which are not appropriate for

us, since we want t to run at least as fast as s. So here we develop a restricted kind

of weak simulation, which we call a fast simulation.

Figure 5.6 illustrates the concept of a state s simulated by a state t. In the figure,

sRt is represented by a dashed arrow from state s to state t, while a transition

relation from say s to u1 is represented by a solid arrow. We partition successors of

s into two sets, U = {u1, . . . , un} and V = {v1, . . . , vm}. The states in V represent

“insignificant” moves, and we require that t itself simulates each of them (note the

dashed arrows from each element of V to t. The states in U represent “significant”

moves, and we require that t be able to match such moves. The state t then, must

transition to a set of states W = {w1, w2, . . . , wr} such that there exist some weight

function ∆(i, j) of size m×r where the sum of its rows projects to U and the sum of

its columns projects to W . Intuitively then, t matches s’s behavior either in place

88

· · ·

R

R

R

u1

v1

vn

um

wr

p1

pn

q1

qn

w1 w2

p1 p2 pr

· · · ∆(m, 1) ∆(m, 2) ∆(m, r)

∆(1, r)∆(1, 2)∆(1, 1)

· · ·

Transition Relation

s t

Simulation Relation if ∆(i, j) > 0

Simulation Relation

Figure 5.6: Fast Probabilistic Simulation

or by moving to a simulating state in one step. Formally, we have the following

definition:

Definition 5.2.4 (Fast Simulation) Let R be a binary relation on S. R is a fast

simulation if, whenever sRt, the successors of s can be partitioned into two sets U

and V such that

1. vRt for every v ∈ V , and

2. letting K =
∑

u∈U P(s, u), if K > 0 then there exists a function ∆ : S × S →

[0, 1] such that

(a) ∆(u, w) > 0 implies that uRw,

(b) P(s, u)/K =
∑

w∈S ∆(u, w) for all u ∈ U , and

89

t′

w

1
2

1
2

1
3

1

1
2

1

1
2

1
2

1
6

s t

s′

Figure 5.7: An example Markov chain

(c) P(t, w) =
∑

u∈U ∆(u, w) for all w ∈ S.

Notice that in condition 2(b), P(s, u)/K is the conditional probability of going from

s to u, given that s goes to U . The reason for using a conditional probability here

may be intuitively unclear; a justification for this is to normalize the probability of

significant transitions; in fact the best justification for this definition is its utility in

the proof of the key Theorem 5.2.7 below. We now illustrate this concept with an

example:

Example 5.2.1 Consider the Markov chain in Figure 5.7, where S = {s, t, s′, t′, w}.

Define R by sRt, s′Rt′, together with uRu for every u ∈ S. (In other words, R is the

reflexive closure of {(s, t), (s′, t′)}.) Then we can show that R is a fast simulation:

• For pairs of the form xRx, we can always satisfy the requirements of Defini-

tion 5.2.4 by choosing U to be the set of successors of x and V to be ∅. Then

K = 1, and for each u ∈ U we can choose ∆(u, u) = P(x, u).

Here is the Delta function for sRs. The top row has the possible destinations

of the simulating state with their probabilities while the left most column has

90

the possible destinations of the simulated state also with their probabilities,

although in this case they are the same. We have omitted rows and columns

that do not contribute to the function.

∆s,s s s′ t′

s 1
2

0 0

s′ 0 1
3

0

t′ 0 0 1
6

It is straightforward to verify that these choices satisfy conditions 1, 2(a), 2(b),

and 2(c).

• For sRt we can choose U = {s′, t′} and V = {s}, which makes K = 1
2
, and

we can choose ∆(s′, t′) = 2
3
and ∆(t′, t′) = 1

3
.

∆s,t t′

s′ 2
3

t′ 1
3

• Finally, for s′Rt′ we can choose U = {s, w} and V = ∅, which makes K = 1,

and we can choose ∆(s, t) = 1
2
and ∆(w,w) = 1

2
.

∆s′,t′ t w

s 1
2

0

w 0 1
2

We remark that every strong simulation is also a fast simulation, since a strong simu-

lation is just a fast simulation in which all the V sets are empty. Furthermore, every

fast simulation is also a weak simulation as defined in Definition 34 of [BKHW05].

Properties of fast simulation. We now develop the key properties of fast simula-

tion starting with terminal states.

91

Definition 5.2.5 (Upwards Closed Set) Let R be a binary relation on S. A set

T of states is upwards closed with respect to R if, whenever s ∈ T and sRs′, we

also have s′ ∈ T .

If s ∈ S, n is a natural number, and T ⊆ S, then let us write Pr(s, n, T) to denote the

probability of reaching a state in T from s in at most n steps. Following [BKHW05],

we can calculate Pr(s, n, T) with a recurrence:

Pr(s, n, T) =

1, if s ∈ T

∑

s′∈S P(s, s′)Pr(s′, n− 1, T), if n > 0 and s 6∈ T

0, if n = 0 and s 6∈ T

Note that Pr(s, n, T) increases monotonically with n:

Lemma 5.2.6 Pr(s, n, T) ≤ Pr(s, n+ 1, T), for all n, s, and T .

Proof. By induction on n. For the basis, if s 6∈ T , then Pr(s, 0, T) = 0 ≤ Pr(s, 1, T).

And if s ∈ T , then Pr(s, 0, T) = 1 ≤ Pr(s, 1, T).

For the induction, assume that for some k ≥ 0 we have Pr(s, k, T) ≤ Pr(s, k +

1, T) for all s and T . We must show that Pr(s, k + 1, T) ≤ Pr(s, k + 2, T). First

note that if s ∈ T then we have Pr(s, k + 1, T) = 1 = Pr(s, k + 2, T). It remains to

consider the case when s 6∈ T . In this case we have

Pr(s, k + 2, T) =
∑

s′∈S

P(s, s′)Pr(s′, k + 1, T)

≥
∑

s′∈S

P(s, s′)Pr(s′, k, T)

(by induction)

= Pr(s, k + 1, T)

92

We now proceed to the key theorem about fast simulation; its proof is similar

to the proof of Theorem 54 of [BKHW05], though that theorem refers to strong

simulation.

Theorem 5.2.7 (Reachability) If R is a fast simulation, T is upwards closed

with respect to R, and s1Rs2, then Pr(s1, n, T) ≤ Pr(s2, n, T) for every n.

Proof. By induction on n. For the basis, note that if s1 6∈ T , then Pr(s1, 0, T) =

0 ≤ Pr(s2, 0, T). And if s1 ∈ T , then s2 ∈ T , since s1Rs2 and T is upwards closed.

So we have Pr(s1, 0, T) = 1 = Pr(s2, 0, T).

For the induction, first note that if s1 ∈ T then as above we have Pr(s1, k+1, T) =

1 = Pr(s2, k+1, T), and if s2 ∈ T then we have Pr(s1, k+1, T) ≤ 1 = Pr(s2, k+1, T).

It remains to consider the case when s1 6∈ T and s2 6∈ T . In this case we have

Pr(s1, k + 1, T) =
∑

s∈S

P(s1, s)Pr(s, k, T)

=
∑

v∈V

P(s1, v)Pr(v, k, T) +
∑

u∈U

P(s1, u)Pr(u, k, T)

where U and V are as specified in Definition 5.2.4. (Note that the rearrangement is

valid because the series are absolutely convergent.)

Now, for every v ∈ V , since vRs2 we get by induction that Pr(v, k, T) ≤

Pr(s2, k, T). Also, letting K =
∑

u∈U P(s1, u), we note that
∑

v∈V P(s1, v) =

(1−K). Hence we have

∑

v∈V

P(s1, v)Pr(v, k, T) ≤
∑

v∈V

P(s1, v)Pr(s2, k, T)

= (
∑

v∈V

P(s1, v))Pr(s2, k, T)

= (1−K)Pr(s2, k, T)

≤ (1−K)Pr(s2, k + 1, T)

93

Note that if K = 0, then U = ∅, which implies that

Pr(s1, k + 1, T) =
∑

v∈V

P(s1, v)Pr(v, k, T) +
∑

u∈U

P(s1, u)Pr(u, k, T)

≤ (1− 0)Pr(s2, k + 1, T) + 0

= Pr(s2, k + 1, T)

We are left with the case when K > 0. In that case, by Definition 5.2.4 there exists

a function ∆ satisfying conditions 2(a), 2(b), and 2(c). Hence we have

∑

u∈U

P(s1, u)Pr(u, k, T) =
∑

u∈U

(K
∑

w∈S

∆(u, w))Pr(u, k, T)

= K
∑

u∈U

(
∑

w∈S

∆(u, w)Pr(u, k, T))

≤ K
∑

u∈U

(
∑

w∈S

∆(u, w)Pr(w, k, T))

(by induction, as ∆(u, w) > 0 implies uRw)

= K
∑

w∈S

(
∑

u∈U

∆(u, w)Pr(w, k, T))

= K
∑

w∈S

(
∑

u∈U

∆(u, w))Pr(w, k, T)

= K
∑

w∈S

P(s2, w)Pr(w, k, T)

= KPr(s2, k + 1, T)

Finally, we have

Pr(s1, k + 1, T) =
∑

v∈V

P(s1, v)Pr(v, k, T) +
∑

u∈U

P(s1, u)Pr(u, k, T)

≤ (1−K)Pr(s2, k + 1, T) +KPr(s2, k + 1, T)

= Pr(s2, k + 1, T)

We can illustrate Theorem 5.2.7 by considering the Markov chain in Exam-

ple 5.2.1 above and its fast simulation R. Because s′Rt′ and {w} is upwards closed

94

with respect to R, Theorem 5.2.7 tells us that Pr(s′, n, {w}) ≤ Pr(t′, n, {w}), for

every n. Direct calculation confirms these inequalities for n ≤ 5:

n Pr(s′, n, {w}) Pr(t′, n, {w})

0 0 0

1 1
2

1
2

2 1
2

1
2

3 5
8

3
4

4 11
16

3
4

5 73
96

7
8

We remark that the universal relation RU = S × S is trivially a fast simulation.

But under RU the only upwards closed sets are ∅ and S itself, which means that

Theorem 5.2.7 is uninteresting in that case.

Note that Theorem 5.2.7 also holds if R is a strong simulation, since every strong

simulation is also a fast simulation. Interestingly, Theorem 5.2.7 fails if R is a weak

simulation as defined in Definition 34 of [BKHW05]. Here is a counterexample:

Example 5.2.2 Consider the Markov chain in Figure 5.8, from page 197 of [BKHW05].

If R is the reflexive closure of {(s, s′), (u1, u2)}, then R is a weak simulation and {w}

is upwards closed with respect to R, yet Pr(s, 3, {w}) = 7/16 and Pr(s′, 3, {w}) =

6/16. Notice that in this case R is not a fast simulation.

Now that we have developed fast simulation on abstract Markov chains, we are

almost ready to apply it to our study of the stripping operation ⌊·⌋. It turns out,

however, that when we study the behavior of ⌊·⌋ we will see that we do not need

the great flexibility allowed by fast simulation as defined in Definition 5.2.4. We

therefore introduce a restricted kind of fast simulation as follows:

95

1

1
2

3
4

1
2

1
2

1
2

1
2

1
4

1
2

u2u1

s′s

w

Figure 5.8: Another example Markov chain

Definition 5.2.8 A binary relation R on S is a simple fast simulation if, whenever

sRt, either

1. for every successor s′ of s, we have s′Rt; or else

2. there is a bijection δ from the successors of s to the successors of t such that

for every successor s′ of s, we have P(s, s′) = P(t, δ(s′)) and s′Rδ(s′).

Compared with fast simulation in Definition 5.2.4, we can see that here case 1

corresponds to the situation where all of the moves from s are “inessential,” allowing

us to take U = ∅. And case 2 corresponds to the situation where all of the moves

from s are “essential,” allowing us to take V = ∅; moreover we can use a very simple

weight function that pairs up the successors of s and the successors of t in a one-

to-one manner. Figure 5.9 illustrates case 2 for some states s and t where sRt. A

distinct simulating state ti must exist for each successor si of s and the probability

pi of reaching si must be matched by the probability of reaching ti from t. Next we

show that every simple fast simulation is indeed a fast simulation.

96

t

· · ·

sn tn

t2

· · ·

t1

R

s1

s2

Transition Relation

Simulation Relation

p2

R

R

R

p1

pn

p1

p2

pn

s

Figure 5.9: Simple Fast Probabilistic Simulation

Theorem 5.2.9 Every simple fast simulation R is a fast simulation.

Proof. Suppose that R is a simple fast simulation and that sRt.

If case 1 holds, then we satisfy Definition 5.2.4 by letting V be the set of suc-

cessors of s and letting U be ∅. Note in this case that K = 0, so condition 2 of

Definition 5.2.4 is satisfied vacuously.

If case 2 holds, then we let U be the set of successors of s and let V be ∅. Now

condition 1 of Definition 5.2.4 is satisfied vacuously. To satisfy condition 2, note

that K = 1 and define ∆(s′, δ(s′)) = P(s, s′) = P(t, δ(s′)). (All other values of ∆

are 0.) It is straightforward to verify that ∆ satisfies conditions 2(a), 2(b), and 2(c).

97

This concludes our treatment of fast simulation on abstract Markov chains. We

are now ready to apply these results to our study of secure information flow. We do

this next.

5.3 The Stripping Relation in a Probabilistic Setting

In this section, we formally define the stripping operation on well-typed commands

in our random assignment language and use our results about fast simulation to

prove a fundamental result about the relationship between the behavior of c and of

⌊c⌋. Intuitively, ⌊c⌋ eliminates all subcommands of c that contain no assignments

to L variables; it is easy to see that this is the same as eliminating subcommands

of type H cmd . More precisely, we have the following definition, an early version of

which appeared in [SA06]:

Definition 5.3.1 (Stripping Function) Let c be a well-typed command. We de-

fine ⌊c⌋ = done if c has type H cmd; otherwise, define ⌊c⌋ by

• ⌊x := e⌋ = x := e

• ⌊x
?
← D⌋ = x

?
← D

• ⌊if e then c1 else c2⌋ = if e then ⌊c1⌋ else ⌊c2⌋

• ⌊while e do c⌋ = while e do ⌊c⌋

• ⌊c1; c2⌋ =

⌊c2⌋ if c1 : H cmd

⌊c1⌋ if c2 : H cmd

⌊c1⌋; ⌊c2⌋ otherwise

Also, we define ⌊µ⌋ to be the result of deleting all H variables from µ and we extend

⌊·⌋to well-typed configurations by ⌊(c, µ)⌋ = (⌊c⌋, ⌊µ⌋).

98

This definition is very close to that of Chapter 3, expect for the random command;

it is derived from [SA07] but in that paper the stripping relation replaced subcom-

mands of type H cmd with skip; in contrast our new definition here aggressively

eliminates such subcommands in sequential compositions and replaces them with

done in the other cases. Note that ⌊µ⌋ ∼L µ. As expected, stripping removes all

variables that are not typed L; here is a simple lemma for this:

Lemma 5.3.2 For any command c, ⌊c⌋ contains only L variables.

Proof. By induction on the structure of c. If c has type H cmd , then ⌊c⌋ = done,

which (vacuously) contains only L variables. If c does not have type H cmd , then

consider the form of c.

- If c is of the form x := e, then ⌊c⌋ = x := e. Since c does not have type

H cmd , then by rule update t we must have that x is a L variable and e : L,

which implies by Simple Security that e contains only L variables.

• The case of x
?
← D is similar.

- If c is of the form if e then c1 else c2, then ⌊c⌋ = if e then ⌊c1⌋ else ⌊c2⌋.

By rule if t we have e : L, which implies by Simple Security that e contains

only L variables. And, by induction, ⌊c1⌋ and ⌊c2⌋ contain only L variables.

- If c is of the form while e do c1, then ⌊c⌋ = while e do ⌊c1⌋. By rule whilet,

e : L, which implies by Simple Security that e contains only L variables. And,

by induction, ⌊c1⌋ contains only L variables.

- If c is of the form c1; c2 then if c1 : H cmd then ⌊c⌋ = ⌊c2⌋ which by induction,

contains only L variables. Similarly if c2 : H cmd then ⌊c⌋ = ⌊c1⌋ which by

induction, contains only L variables. Otherwise, ⌊c⌋ = ⌊c1⌋; ⌊c2⌋. In this case

by two applications of induction, ⌊c1⌋ and ⌊c2⌋ contain only L variables.

99

5.4 Fast Low Probabilistic Simulation

We now specialize fast simulation from arbitrary Markov chains to the particular

Markov chain of well-typed configurations (c, µ) of our random assignment language.

In addition, we impose the requirement that the simulating configuration’s memory

must be low equivalent to the simulated configuration’s memory:

Definition 5.4.1 A binary relation R on well-typed configurations is a fast low

simulation if R is a fast simulation such that whenever (c1, µ1)R(c2, µ2), we have

µ1 ∼L µ2.

Recalling that any function is also a relation, our stripping function can also be

viewed as one. When we view it that way, we use the notation ⌊·⌋ to denote the

stripping relation, and we write (c1, µ1)⌊·⌋(c2, µ2) to denote ⌊(c1, µ1)⌋ = (c2, µ2).

We now are ready for the key result of this chapter which says that the relation

⌊·⌋ is a fast low simulation with respect to our language semantics. But first we

give an example that illustrates how the behaviors of (c, µ) and (⌊c⌋, µ) can differ.

Consider the program

while h do h
?
← {0, 1};

l := 1

and its stripped version

l := 1

Notice that under memory {h = 1, l = 0} the original program can run for an arbi-

trary number of steps; it has infinitely many terminating traces, whose probabilities

sum to 1. In contrast, the stripped program always terminates in exactly one step.

We now proceed to our key result which we recall from [SA11].

Theorem 5.4.2 ⌊·⌋is a fast low simulation.

100

Proof. First note that if (c, µ)⌊·⌋(d, ν), then we have ν = ⌊µ⌋, which implies µ ∼L ν.

More substantially, we must show that ⌊·⌋ is a fast simulation. By Theorem 5.2.9, it

suffices to show the stronger result that ⌊·⌋ is a simple fast simulation. Note that the

stronger result is easier to prove, because it gives us a stronger induction hypothesis

to use in the case of c1; c2.
2

Now suppose that (c, µ)⌊·⌋(d, ν), which means that that d = ⌊c⌋ and ν = ⌊µ⌋.

We must show that either condition 1 or condition 2 of Definition 5.2.8 holds. We

make this argument by induction on the structure of c.

First, if c has type H cmd , then d = done. Now consider the (possibly infinite)

set of successors of (c, µ):

(c, µ)
p1
−→ (c1, µ1)

(c, µ)
p2
−→ (c2, µ2)

(c, µ)
p3−→ (c3, µ3)

. . .

For every i, by Subject Reduction we have ci : H cmd , and by Confinement we

have µi ∼L µ. Hence we have (ci, µi)⌊·⌋(d, ν). Thus we can see that condition 1 of

Definition 5.2.8 is satisfied.

Next, if c does not have type H cmd , then consider the possible forms of c:

1. c = x := e.

Here d = c. By update t, x : L var and e : L. So by Simple Security and the

fact that ν = ⌊µ⌋, we have µ(e) = ν(e), which implies that ν[x := ν(e)] =

⌊µ[x := µ(e)]⌋. Hence the move (c, µ)
1
−→(done, µ[x := µ(e)]) is matched

by the move (d, ν)
1
−→(done, ν[x := ν(e)]). Formally, condition 2 of Defi-

nition 5.2.8 is satisfied by choosing δ((done, µ[x := µ(e)])) = (done, ν[x :=

ν(e)]).

2This is an example of what George Pólya called the “Inventor’s Paradox”.

101

2. c = x
?
← D.

This case is similar to case 1; again d = c and each move (c, µ)
D(v)
−→(done, µ[x :=

v]) is matched by (d, ν)
D(v)
−→(done, ν[x := v]). Formally, for each v such that

D(v) > 0, we choose δ((done, µ[x := v])) = (done, ν[x := v]).

3. c = if e then c1 else c2.

Here d = if e then ⌊c1⌋ else ⌊c2⌋. By if t, e : L and by Simple Security µ(e) =

ν(e). So if µ(e) 6= 0, then (c, µ)
1
−→(c1, µ) is matched by (d, ν)

1
−→(⌊c1⌋, ν).

Formally, we choose δ((c1, µ)) = (⌊c1⌋, ν). The case when µ(e) = 0 is similar.

4. c = while e do c1.

Here d = while e do ⌊c1⌋. By whilet, e : L and c1 does not have type H cmd .

By Simple Security, we have µ(e) = ν(e). So if µ(e) 6= 0, then the move

(c, µ)
1
−→(c1;while e do c1, µ) is matched by (d, ν)

1
−→(⌊c1⌋;while e do ⌊c1⌋, ν).

(Notice that because c1 does not have typeH cmd , we have ⌊c1;while e do c1⌋ =

⌊c1⌋;while e do ⌊c1⌋.)

Formally, we choose δ((c1;while e do c1, µ)) = (⌊c1⌋;while e do ⌊c1⌋, ν). The

case when µ(e) = 0 is similar.

5. c = c1; c2.

First note that under rule composes, any move from (c1; c2, µ) results from a

move

(c1, µ)
p
−→(c′1, µ

′)

where c′1 may or may not be done. If so, then the move is

(c1; c2, µ)
p
−→(c2, µ

′)

and if not, then the move is

(c1; c2, µ)
p
−→(c′1; c2, µ

′).

102

Now we split into subcases, depending on the types of c1 and c2.

(a) If c1 has type H cmd , then d = ⌊c2⌋. By Subject Reduction we have

c′1 : H cmd , and by Confinement we have µ′ ∼L µ. Hence (d, ν) can

match either of the possible moves from (c1; c2, µ) by doing nothing, since

we have both (c2, µ
′)⌊·⌋(d, ν) and (c′1; c2, µ

′)⌊·⌋(d, ν). So condition 1 of

Definition 5.2.8 is satisfied.3

(b) If neither c1 nor c2 has type H cmd , then d = ⌊c1⌋; ⌊c2⌋. Define d1 = ⌊c1⌋

and d2 = ⌊c2⌋. Now, by induction (d1, ν) can match the moves from

(c1, µ) so that either condition 1 or 2 of Definition 5.2.8 is satisfied. We

consider these two possibilities in turn:

• If condition 1 is satisfied, then we always have (c′1, µ
′)⌊·⌋(d1, ν). Now

observe that d1 cannot be done, since d1 = ⌊c1⌋ and c1 does not

have type H cmd . This implies that c′1 cannot have type H cmd

and in particular that c′1 is not done. Hence each move from c must

be (c1; c2, µ)
p
−→(c′1; c2, µ

′). Moreover we have (c′1; c2, µ
′)⌊·⌋(d1; d2, ν).

Hence condition 1 is satisfied for (c1; c2, µ) and (d1; d2, ν).

• If condition 2 is satisfied, then there is a bijection δ from the suc-

cessors of (c1, µ) to the successors of (d1, ν). If we let (d′1, ν
′) de-

note δ((c′1, µ
′)), then under condition 2 we have (d1, ν)

p
−→(d′1, ν

′)

and (c′1, µ
′)⌊·⌋(d′1, ν

′). Now consider c′1.

3We remark that this is the critical case that prevents us from showing that ⌊·⌋ is a
strong simulation. For example, if c is h := 2; l := 3 and µ is {h = 0, l = 1}, then d is

l := 3 and ν is {l = 1}. In this case the move (c, µ)
1
−→(l := 3, {h = 2, l = 1}) cannot be

matched by the move (d, ν)
1
−→(done, {l = 3}), since the resulting memories are not low

equivalent. Instead (d, ν) must match the move by doing nothing.

103

If c′1 = done, then the move from (c1; c2, µ) is (c1; c2, µ)
p
−→(c2, µ

′).

In this case we have d′1 = done as well, so we have the matching

move (d1; d2, ν)
p
−→(d2, ν

′).

And if c′1 6= done, then the move from (c1; c2, µ) is (c1; c2, µ)
p
−→(c′1; c2, µ

′).

This move is matched by (d1; d2, ν)
p
−→(d′1; d2, ν

′), but only if c′1 does

not have type H cmd . For if c′1 : H cmd , then ⌊c′1; c2⌋ = ⌊c2⌋ = d2 6=

d1; d2. But in this case we have d′1 = done, which means that we

actually have the matching move (d1; d2, ν)
p
−→(d2, ν

′).4

(c) Finally, if c1 does not have type H cmd and c2 : H cmd , then the argu-

ment is essentially the same as in case (b).

Now we are able to prove that if (c, µ) is well-typed and can terminate within

at most n steps with its L variables having certain values, then ⌊(c, µ)⌋ can do the

same, with probability at least as great. (This property was claimed, without proof,

as Theorem 3.6 of [SA06].)

Let us say that a low memory property Φ is any property that depends only on

the values of L variables. For example, if x and y are L variables, then “x = 5 and

y is even” is a low memory property.

Theorem 5.4.3 (The Bucket Property) Let c be well-typed and let Φ be a low

memory property. For any n, the probability that (c, µ) terminates within n steps

in a final memory satisfying Φ is less than or equal to the corresponding probability

for ⌊(c, µ)⌋.

4An example illustrating this scenario is when c is (if 0 then l := 1 else h := 2); l := 3.
This goes in one step to h := 2; l := 3, which strips to l := 3. In this case, ⌊c⌋ =
(if 0 then l := 1 else done); l := 3, which goes in one step to l := 3.

104

Proof. By Theorem 5.4.2 ⌊·⌋ is a fast simulation. Then by Definition 5.4.1, ⌊·⌋is

a fast simulation. Now, let T = {(done, ν) | ν satisfies Φ}. It is easy to see that T is

upwards closed with respect to ⌊·⌋. For if (done, ν1) ∈ T and (done, ν1)⌊·⌋(done, ν2),

then ν1 satisfies Φ and ν1 ∼L ν2, which implies that ν2 also satisfies Φ. Therefore

we can apply Theorem 5.2.7 to deduce that

Pr((c, µ), n, T) ≤ Pr((⌊c⌋, ⌊µ⌋), n, T)

for every n.

We can extend this result to the case of eventually terminating in T , since the

probability of eventually terminating in T is just limn→∞ Pr((c, µ), n, T). We will

use these results about ⌊c⌋ in the next section.

5.5 Applications

Theorem 5.4.3 gives us the ability to quantify how the behavior of a well-typed

program c can deviate from its stripped version ⌊c⌋. But it also gives us a way to

quantify how the behavior of c under memory µ can deviate from its behavior under

ν, assuming that µ and ν are low equivalent. The reason is that, by Lemma 5.3.2, ⌊c⌋

contains only L variables, which means that its behavior under µ must be identical

to its behavior under ν. Hence we can build a “bridge” between (c, µ) and (c, ν):

(c, µ)
Thm 5.4.3
←−−−→ (⌊c⌋, ⌊µ⌋) ≡ (⌊c⌋, ⌊ν⌋)

Thm 5.4.3
←−−−→ (c, ν)

In this section, we develop several applications of these ideas.

First, suppose that c is well-typed and probabilistically total, which means that

it halts with probability 1 from all initial memories. Then (c, µ)’s nontermination

bucket is empty, which implies by Theorem 5.4.3 that (c, µ)’s buckets are identical

105

to (⌊c⌋, ⌊µ⌋)’s buckets. Similarly, (c, ν)’s buckets are identical to (⌊c⌋, ⌊ν⌋)’s buck-

ets. Hence (c, µ)’s buckets are identical to (c, ν)’s buckets. So we have proved the

following corollary:

Corollary 5.5.1 If c is well-typed and probabilistically total, then c satisfies proba-

bilistic noninterference.

This same result was proved in a different way as Corollary 3.5 of [SA06]; the proof

there used a weak probabilistic bisimulation.

More interestingly, we can now prove an approximate probabilistic noninterfer-

ence result for well-typed programs whose probability of nontermination is bounded.

Corollary 5.5.2 Suppose that c is well-typed and fails to terminate from any initial

memory with probability at most p. If µ and ν are low equivalent, then the deviation

between the distributions of L outcomes under µ and under ν is at most 2p.

Proof. Since (c, µ)’s nontermination bucket contains at most p units of water, the

sum of the absolute value of the differences between the L outcome buckets of (c, µ)

and of (⌊c⌋, ⌊µ⌋) is at most p. Similarly for (c, ν). Hence the sum of the absolute

value of the the differences between the L outcome buckets of (c, µ) and of (c, ν) is

at most 2p.

Notice that the program in Figure 5.1 achieves the upper bound of this corollary.

From any initial memory, this program fails to terminate with probability at most

1/2, so here p = 1/2. When h = 0, it terminates with l = 0 with probability 1/2

and terminates with l = 1 with probability 0. When h = 1, it terminates with

l = 0 with probability 0 and terminates with l = 1 with probability 1/2. Hence the

deviation between the two distributions of L outcomes is |1/2− 0|+ |0− 1/2| = 1,

106

which is 2p. In general, applying Corollary 5.5.2 usefully requires a good bound p

on the probability of nontermination; of course such bounds may be hard to obtain.

As an application of the approximate noninterference result, notice that an ad-

versary A, given the final values of c’s L variables, might try to distinguish between

initial memories µ and ν through statistical hypothesis testing. Assuming that

the probability p of nontermination is small, then the approximate noninterference

property gives us a way to bound A’s ability to do this.5

In this chapter we extended the concept of fast simulation to a probabilistic

setting, applied stripping to operate on a language with a random assignment com-

mand, and extended fast low simulation to a probabilistic semantics. Then, we used

the theory to prove the language’s termination insensitive probabilistic noninterfer-

ence property. We have also shown that, under the Denning restrictions, well-typed

probabilistic programs are guaranteed to satisfy an approximate probabilistic nonin-

terference property, provided that their probability of nontermination is small. This

property will be critical in Chapter 6, to prove computational noninterference on a

language with cryptographic primitives.

Our proofs are based on a new notion of fast simulation, which builds on the work

of Baier, Katoen, Hermanns, and Wolf [BKHW05] on strong and weak simulation

on discrete and continuous Markov chains. The theorem that stripping is a fast

simulation shows that the theory of probabilistic simulation can be applied fruitfully

to the secure information flow problem, giving another proof technique in addition

to the more common bisimulation-based approach.

5Similar ideas are considered (in the context of a process algebra) in the work of Di
Pierro, Hankin, and Wiklicky [DPHW02].

107

CHAPTER 6

SECURE INFORMATION FLOW WITH ENCRYPTION.

In this Chapter, which is a revised version of [SA06], we extend the probabilistic

language of Chapter 5 with encryption and decryption primitives which transform

messages to ciphertexts and back. We model these primitives as algorithms and so

they are only as effective as the algorithm’s ability to hide the information in the

message; this ability cannot be perfect. Nonetheless, our intuition is that encrypting

a H plaintext yields a L ciphertext and decrypting a L (or H) ciphertext yields a

H plaintext.

We craft a new type system for secure information flow. But while the language

of Chapter 5 has an approximate noninterference property, this is not possible for a

cryptographic language since the encryption and decryption algorithms cannot be

perfectly effective. Instead we argue:

• that well-typed, polynomial-time programs in our language and type system

extended with the encryption primitive satisfy computational probabilistic non-

interference [BP02], provided that the encryption scheme is IND-CPA secure,

and

• that well-typed, polynomial-time programs in our language and type system

extended with the encryption and decryption primitives satisfy a computa-

tional probabilistic noninterference provided that the encryption scheme is

IND-CCA secure.

It may seem that the first item above is subsumed by the second but the security

property of the encryption scheme for the language with only encryption primitives

(IND-CPA), is considerably weaker than that for the second language (IND-CCA).

As we shall see there remains a question as to whether IND-CPA security would be

108

sufficient for the soundness of the language with decryption primitives; we think that

it would, but do not have a proof for this. In work by Peeter Laud [Lau02] relating

formal methods to computational cryptography, IND-CCA security is equated to

Dolev Yao with encryption cycles disallowed; as far as we know, IND-CPA security

has no relative in the formal methods world.

Collecting requirements: throughout all of this work, we have classified variables

as H (high) or L (low); an expression is classified as H if it contains any H variables;

otherwise, it is classified as L. So far the Denning restrictions alone have been

sufficient to achieve the desired security property; recalling them: first, to prevent

explicit flows, a H expression may not be assigned to a L variable; second, to

prevent implicit flows, an if or while command whose guard is H may not make

any assignments to L variables. The crucial question, then, is whether a type system

under this setting and which includes the intuition that the encryption of a secret

is public, can be justified.

More precisely, let E and D denote encryption and decryption under some (prop-

erly generated and properly protected) shared key. We would like typing rules like:

• if e is H , then E(e) is L, and

• if e is either L or H , then D(e) is H .

But do these rules make sense? Clearly, they don’t make sense if the encryption

algorithm does not do a good job of hiding the information, but even if it did, it is

not clear that the new type system would be sound as illustrated in the following

example.

Example 6.0.1 Consider a deterministic encryption scheme where the encryption

algorithm is “perfect”, i.e., a perfect pseudo random permutation which for any

message-key pair always generates the same ciphertext (an example of this is a block

109

cipher like AES in Electronic Code Book mode), then the following well-typed pro-

gram can efficiently leak a secret.

Let secret be a H n-bit variable, leak and mask be L variables, “|” denote bitwise-

or, and “≫ 1” denote right shift by one bit. Then, the program:

leak := 0;

mask := 2n−1;

while mask 6= 0 do (

if E(secret | mask) = E(secret) then

leak := leak | mask ;

mask := mask ≫ 1

)

copies secret to leak in time linear in n. This is because since E is a deterministic

encryption function, then the test in the if command is true iff secret | mask =

secret. And this is true iff the bit of secret specified by mask is 1.

Furthermore, under the Denning restrictions together with the above rule for typing

E , this program is well-typed—the guards of the while and if are both L, which

means that the nested assignments to the L variables leak and mask are allowed.

Probabilistic encryption. It is well known that deterministic encryption is not

sufficient for confidentiality in an stateless encryption scheme [BR05], and that one

needs a probabilistic encryption algorithm, so that encrypting the same plaintext

repeatedly yields different ciphertexts with high probability. Note that if E were

probabilistic, the leaking program above would not work—then likely all the tests

in the if command would be false, which means that leak would just end up with

value 0.

110

We will use two strong properties that are used in the cryptographic community

to define the security of symmetric encryption schemes, namely IND-CPA and IND-

CCA security [BR05]. These abbreviations stand for “indistinguishability under

chosen-plaintext attack” and “indistinguishability under chosen-ciphertext attack”.

Security property of language and type system: from an information theoretic

perspective, even the strongest security property on an encryption scheme is com-

pletely insecure in the sense that encrypting a message leaks the entire content into

the ciphertext.

Example 6.0.2 Let variable h be typed H, variable l be L, and consider the follow-

ing well-typed program

l
?
← E(h)

which encrypts h and puts the result into l. We use
?
← here to reflect the fact that

the encryption algorithm (E) is probabilistic. Probabilistic noninterference requires

that the probability distribution on the final values of L variables be independent of

the initial values of H variables. That plainly cannot hold here, because any two

distinct plaintexts must give rise to disjoint sets of possible ciphertexts—otherwise

decryption would not be possible.

Hence, as the classical probabilistic noninterference property is inappropriate for

this setting, we shall seek a computational probabilistic noninterference result that

says that, if program c is well-typed, then changes to the initial values of H variables

lead to probability distributions on the final values of L variables that are indistin-

guishable to observers with limited computational resources. By its very definition,

this property cannot hold for all well-typed programs. The following program ex-

haustively searches and discovers the implicit key K, then, uses it to leak the secret

h:

111

(phrases) p ::= e | c
(expressions) e ::= x | n | e1 + e2 | . . .
(commands) c ::= done | x := e |

x
?
← D |

if e then c1 else c2 |
while e do c | c1; c2

(variables) x, y, z, . . .

Figure 6.1: Probabilistic language syntax

1. Pick a few L plaintexts and encrypt each with E , producing a few L ciphertexts.

2. Go through all possible keys, searching for one that successfully decrypts each

of the ciphertexts. Decryption is done not by calling the decryption prim-

itive D, but by directly implementing the underlying decryption algorithm.

Eventually the key will be found, and it can be stored in a L variable.

3. Encrypt the H variable h using E , producing a L ciphertext.

4. Decrypt the ciphertext using the key found in Step 2, and write the result into

the L variable l.

Of course, the running time of this program is exponential in the size of K. There-

fore, our security property will apply only to programs that run in polynomial time

in the size of K.

Recalling probabilistic language results: we now recall several results from Chap-

ter 5 that will be needed as foundations for the cryptographic languages. First, are

the syntax and semantic and typing rules; they are presented here in Figure 6.1,

6.2, and 6.3. Next are some properties of the type system:

Lemma 6.0.3 (Simple Security) If Γ ⊢ e : τ , then e contains only variables of

level τ or lower.

Proof. By induction on the structure of e.

112

(updates) x ∈ dom(µ)

(x := e, µ)
1
−→(done, µ[x := µ(e)])

(randoms) x ∈ dom(µ) D(v) > 0

(x
?
← D, µ)

D(v)
−→(done, µ[x := v])

(if s) µ(e) 6= 0

(if e then c1 else c2, µ)
1
−→(c1, µ)

µ(e) = 0

(if e then c1 else c2, µ)
1
−→(c2, µ)

(whiles) µ(e) = 0

(while e do c, µ)
1
−→(done, µ)

µ(e) 6= 0

(while e do c, µ)
1
−→(c;while e do c, µ)

(composes) (c1, µ)
p
−→(done, µ′)

(c1; c2, µ)
p
−→(c2, µ

′)

(c1, µ)
p
−→(c′1, µ

′) c′1 6= done

(c1; c2, µ)
p
−→(c′1; c2, µ

′)

(dones) (done, µ)
1
−→(done, µ)

Figure 6.2: Structural Operational Semantics

Lemma 6.0.4 (Confinement) If Γ ⊢ c : τ cmd, then c assigns only to variables

of level τ or higher.

Proof. By induction on the structure of c.

Lemma 6.0.5 (Subject Reduction) If Γ ⊢ c : τ cmd and (c, µ)
p
−→(c′, µ′) for

some p > 0, then Γ ⊢ c′ : τ cmd.

Proof. By induction on the structure of c.

Next we recall a series of results from Chapter 5 that well-typed probabilistically

total programs satisfy probabilistic noninterference. We shall need these formaliza-

113

(base) L ⊆ H

(cmd) τ ⊆ τ ′

τ ′ cmd ⊆ τ cmd

(reflex) ρ ⊆ ρ

(trans) ρ1 ⊆ ρ2 ρ2 ⊆ ρ3
ρ1 ⊆ ρ3

(subsump) Γ ⊢ p : ρ1 ρ1 ⊆ ρ2
Γ ⊢ p : ρ2

(donet) Γ ⊢ done : H cmd

(int t) Γ ⊢ n : L

(rval t) Γ(x) = τ var
Γ ⊢ x : τ

(update t) Γ(x) = τ var Γ ⊢ e : τ
Γ ⊢ x := e : τ cmd

(randomt) Γ(x) = τ var

Γ ⊢ x
?
← D : τ cmd

(plus t) Γ ⊢ e1 : τ Γ ⊢ e2 : τ
Γ ⊢ e1 + e2 : τ

(if t) Γ ⊢ e : τ Γ ⊢ c1 : τ cmd Γ ⊢ c2 : τ cmd
Γ ⊢ if e then c1 else c2 : τ cmd

(whilet) Γ ⊢ e : τ Γ ⊢ c : τ cmd
Γ ⊢ while e do c : τ cmd

(composet) Γ ⊢ c1 : τ cmd Γ ⊢ c2 : τ cmd
Γ ⊢ c1; c2 : τ cmd

Figure 6.3: Probabilistic Typing Rules

tions and theorems for proving the soundness of the cryptographic languages. We

start with L-equivalent memories:

Definition 6.0.6 Two memories µ and ν are L-equivalent, written µ ∼L ν, if they

agree on the values of all L variables.

114

Definition 6.0.7 (Upwards Closed Set) Let R be a binary relation on S. A set

T of states is upwards closed with respect to R if, whenever s ∈ T and sRs′, we

also have s′ ∈ T .

Next, we need the main result from Section 5.2 which says that in a Discrete

Time Markov Chain, if a relation R is a fast simulation and there are two states s1

and s2 such that s1Rs2, then the probability of reaching an upwards closed set T

from s1 is at most that of s2, i.e., s2 gets to its destination faster or as fast as s1.

Theorem 6.0.8 (Reachability) If R is a fast simulation, T is upwards closed

with respect to R, and s1Rs2, then Pr(s1, n, T) ≤ Pr(s2, n, T) for every n.

We also need the concept of a stripping relation in a probabilistic setting from

Section 5.3 to help us “remove” high from low computation:

Definition 6.0.9 Let c be a well-typed command. We define ⌊c⌋ = done if c has

type H cmd; otherwise, define ⌊c⌋ by

• ⌊x := e⌋ = x := e

• ⌊x
?
← D⌋ = x

?
← D

• ⌊if e then c1 else c2⌋ = if e then ⌊c1⌋ else ⌊c2⌋

• ⌊while e do c⌋ = while e do ⌊c⌋

• ⌊c1; c2⌋ =

⌊c2⌋ if c1 : H cmd

⌊c1⌋ if c2 : H cmd

⌊c1⌋; ⌊c2⌋ otherwise

Also, we define ⌊µ⌋ to be the result of deleting all H variables from µ and we

extend ⌊·⌋to well-typed configurations by ⌊(c, µ)⌋ = (⌊c⌋, ⌊µ⌋).

115

Next, we recall, fast low simulation to capture the idea that a state can simulate

another as far as the low variables are concerned.

Definition 6.0.10 A binary relation R on configurations is a fast low simulation

if R is a fast simulation and whenever (c1, µ1)R(c2, µ2), µ1 ∼L µ2.

Next we recall, the key result from Chapter 5: to capture the idea that the

stripped version of a configuration is able to simulate the original configuration.

Theorem 6.0.11 ⌊·⌋is a fast low simulation.

Next we recall the result that says that the stripped version of a configuration

can reach a terminal state faster (or as fast) as the original configuration. Let a low

memory property Φ be any property that depends only on the values of L variables.

For example, if x and y are L variables, then “x = 5 and y is even” is a low memory

property.

Theorem 6.0.12 (The Bucket Property) Let c be well-typed and let Φ be a low

memory property. For any n, the probability that (c, µ) terminates within n steps

in a final memory satisfying Φ is less than or equal to the corresponding probability

for ⌊(c, µ)⌋.

This result is valid in the case of eventually terminating in T , since the probability

of eventually terminating in T is just limn→∞Pr((c, µ), n, T). We have recalled

a number of results on the probabilistic language of Chapter 5 as a preamble to

applying them to our cryptographic languages. Finally, we have the probabilistic

noninterference result on our language:

116

6.1 Elements of Cryptographic Security

In this section we recall some elements of cryptographic theory mainly from the

book Introduction to modern cryptography by Bellare and Rogaway [BR05]. We

start with the definition of symmetric encryption schemes and IND-CPA security

[BDJR97, BR05]:

Definition 6.1.1 A symmetric encryption scheme SE with security parameter k is

a triple of algorithms (K, E ,D), where

• K is a randomized key-generation algorithm that generates a k-bit key; we

write K
?
← K.

• E is a randomized encryption algorithm that takes a key and a plaintext and

returns a ciphertext; we write C
?
← EK(M).

• D is a deterministic decryption algorithm that takes a key and a ciphertext

and returns a plaintext; we write M := DK(C).

Next, we recall the concept of IND-CPA security (indistinguishability under

chosen-plaintext attack [BR05] pg. 102). Intuitively, a symmetric encryption scheme

SE is IND-CPA secure if, given limited computational resources, there is no way

to distinguish the ciphertexts of two different messages unless the encryption key is

known.

Formally an adversary A exists within a setting or a world which is either 0 or

1 (there are only two possible worlds) and is denoted by b. In each world there is

an LR oracle which is of the form

EK(LR(·, ·, b)),

where K is a randomly generated key. The LR oracle in World 0 receives a pair of

equal-length messages (M0,M1), encrypts M0 using EK , and returns the resulting

117

ciphertext. The LR oracle in World 1 does the same thing using M1. A’s job is

to produce a guess of which world it is in; it is able to use the oracle as much as it

wants, so since A queries the oracle with pairs of messages, it gets back encryptions

of the left messages if A is in World 0 (b = 0) or else the right messages if A is in

World 1 (b = 1). As A is an algorithm, when it is finished its execution, it returns

a bit with its guess of its world. Intuitively, if the encryption scheme is effective, A

will not be able to guess which world it is in with a significant probability, but we

have to be careful how we measure A’s ability to guess its world. For example: A

could simply return 1 on any input; then, it will always guess right if it is in World

1 regardless of how strong SE is. Formally, A is executed in two experiments :

Experiment Exp
ind-cpa-1
SE (A)

K
?
← K;

d
?
← AEK(LR(·,·,1));

return d

Experiment Exp
ind-cpa-0
SE (A)

K
?
← K;

d
?
← AEK(LR(·,·,0));

return d

Definition 6.1.2 The IND-CPA advantage of A is defined as

Adv
ind-cpa
SE (A) = Pr[Exp

ind-cpa-1
SE (A) = 1]−

Pr[Exp
ind-cpa-0
SE (A) = 1].

We say that SE is IND-CPA secure if there is no adversary A running in polynomial

time in the security parameter k that can achieve a non-negligible advantage.

Next, we recall the concept of IND-CCA security (indistinguishability under

chosen-ciphertext attack [BR05] pg. 127). Like the IND-CPA adversary, IND-CCA

118

adversary A is uncertain about which of the two worlds (World 0 or World 1) it is in.

A retains access to the LR-encryption-oracle EK(LR(·, ·, b)) of its counterpart; but

now A has access to a new oracle: a decryption oracle (DK(·)) which is unavailable

to the IND-CPA adversary and which can be used to decrypt any ciphertext except

one that has been obtained using the LR-encryption oracle; otherwise, A would

trivially determine its world by:

-∆7-

c
?
← EK(LR(0, 1, b));

world := DK(c)

So, to prevent A from winning trivially, it is forbidden from querying the decryption

oracle on any ciphertext that it previously received from the LR-oracle. Aside from

these differences, the definitions of Expind-cca-1SE (A) and Expind-cca-0SE (A), of the

IND-CCA advantage Advind-ccaSE (A), and of IND-CCA security are just like the

definitions in the IND-CPA case: A is executed in two experiments :

Experiment Expind-cca-1SE (A)

K
?
← K;

d
?
← AEK(LR(·,·,1)),DK(·);

If A queried DK(·) on a ciphertext previously returned by EK(LR(·, ·, 1))

then return 0

else return d

119

Experiment Expind-cca-0SE (A)

K
?
← K;

d
?
← AEK(LR(·,·,0));

If A queried DK(·) on a ciphertext previously returned by EK(LR(·, ·, 0))

then return 0

else return d

Definition 6.1.3 The IND-CCA advantage of A is defined as

Advind-ccaSE (A) = Pr[Expind-cca-1SE (A) = 1]−

Pr[Expind-cca-0SE (A) = 1].

We say that SE is IND-CPA secure if there is no adversary A running in polynomial

time in the security parameter k that can achieve a non-negligible advantage. (As

usual, s(k) is negligible if for any positive polynomial p(k), there exists k0 such that

s(k) ≤ 1
p(k)

, for all k ≥ k0.).

Finally we need a concept of computational probabilistic noninterference prop-

erty. Work on this area was first introduced by Backes and Pfitzmann [BP02];

we use formulations similar to Laud’s [Lau03, LV05]. Suppose that a well-typed,

polynomial-time program c is run twice, under two L-equivalent memories µ and ν.

Upon termination, the pair of resulting L memories is fed into an adversary program

which tries to discern which memory was used. If there is no adversary capable of

guessing the correct memory with probability non-negligibly greater than 1/2, then

the system has computational probabilistic noninterference property1.

1Note that “the system” here means the language, type system and the encryption
scheme.

120

6.2 A Language With Encryption

In this section, we first extend our probabilistic language with a symmetric encryp-

tion primitive E and extend the type system with a rule that says that the encryption

of a H expression is L. We argue that our new language has computational proba-

bilistic noninterference property if the encryption scheme is IND-CPA secure. Then

we further extend the language with a decryption primitive and argue computational

probabilistic noninterference if the encryption scheme is IND-CCA secure. Note that

we do not include key generation and manipulation in our language. Instead, we

assume that a single key K is generated before executing the program and is used

implicitly in all encryption and decryption operations. Before proceeding, we need

to address issues of message length which can make our language unsound. Our

IND-CPA and IND-CCA secure symmetric encryption are message-length revealing,

because the size of the ciphertext depends on the size of the plaintext.

Example 6.2.1 Consider an encryption scheme that uses cipher-block chaining

with a random initial vector. Under this scheme, an m-block plaintext would encrypt

to an (m+ 1)-block ciphertext. Then, the following program could be used to leak a

secret efficiently:

if secret % 2 = 0 then

h :=< some 1-block plaintext >

else

h :=< some 2-block plaintext >;

l
?
← E(h);

if l is 2 blocks long then leak := 0

else leak := 1

121

This code leaks the last bit of secret, yet it is well-typed (using our intended typing

rule for encryption) if secret and h are H and l and leak are L.

Laud and Vene [LV05] address this difficulty by assuming that encryption is length

concealing, as defined by Abadi and Rogaway [AR00]. Here we adopt an opera-

tionally equivalent restriction: we assume that all integer values in our language are

n bits long, for some n (perhaps 128). This way, we never encrypt plaintexts of

different sizes.

Intuitively, the probabilistic encryption operation is composed of two parts: a

pseudo random permutation of the message and the injection of random information

into the result. A message of n bits permutes to a ciphertext of the same length;

it seems only natural to inject an amount of random information equal to n bits,

making the result of an encryption 2n-bits long. Also in practice, if n is the block

size of a block cipher, and we use CBC$ mode (cipher block chaining with random

initial vector) or CTR$ mode (counter mode with random initial vector) [BR05],

then our ciphertexts will be two n-bit blocks long. Hence, here is the syntax we

choose for the encryption operation in our language:

(x, y)
?
← E(e)

Next we extend the language syntax of Figure 6.1 with our new encryption

command which encrypts the n-bit value of e with the implicit key K and produces

2n-bit ciphertext; it then puts the first n bits into x and the second n bits into y.

Here is the typing and semantic rules for encryption, which we add to the rules in

Figure 6.3 and Figure 6.2 respectively:

(encrypts) x, y ∈ dom(µ) DE(e)(v, u) > 0

((x, y)
?
← E(e), µ)

DE(e)(v,u)
−→ (done, µ[(x, y) := (v, u)])

122

(encrypt t) Γ(x) = τ1 var Γ(y) = τ2 var

Γ ⊢ e : H

τ ⊆ τ1 τ ⊆ τ2

Γ ⊢ (x, y)
?
← E(e) : τ cmd

The semantic rule for encryption requires that under any given key, the encryption

of any particular value must have a fixed distribution, DE(e); this is a natural enough

requirement and is the way encryption works in practice. Then given that a pair of

values have a corresponding probability p in the distribution and that there is a pair

of variables in memory, the encryption command simply assigns the values to the

memories with probability p. These rules formalize our intuition that the encryption

of a H expression e is to be assigned to a pair of variables x and y, regardless of

whether they are H or L2.

We now argue that extending the language and type system with the encryption

command and with the rules encrypt t and encrypts is sound. We begin by show-

ing that no well-typed program can (with probability significantly greater than 1
2
)

efficiently leak a randomly-chosen, 1-bit H variable h into a L variable l, provided

that encryption is IND-CPA secure. Formally, we define a leaking adversary B as a

program that contains a H variable h, a L variable l, and other variables that can

be typed arbitrarily. B is executed in the following experiment:

2To control implicit flows, however, the type of the command must record the minimum
level of variable that is assigned to; this is the purpose of the last two hypotheses in the
rule.

123

Experiment ExpleakSE (B)

K
?
← K;

h0
?
← {0, 1};

h := h0;

initialize all other variables of B to 0;

run BEK (·);

if l = h0 then return 1 else return 0

B’s purpose is to leak h to l; the experiment measures B’s effectiveness in doing

this. In the experiment a proper key and a random 1-bit secret are generated, the

secret is transferred to the program variable h (while h0 does not occur in B); then,

the leaking adversary B is executed; when B stops, its guess is tested against the

original secret. We define the leaking advantage of B as follows:

Definition 6.2.1 Given leaking adversary B in the random assignment language

with encryption, the leaking advantage of B is

AdvleakSE (B) = 2 · Pr[ExpleakSE (B) = 1]− 1.

Note that by a random guess, B can guess h with probability 1
2
, so we adjust our

metric to measure advantage only in the range from 1
2
to 1. We now proceed with

the key theorem of this chapter which says that if B is effective in leaking its secret

then we we can use it to break the underlying encryption scheme.

Theorem 6.2.2 (IND-CPA Reduction) Given a well-typed leaking adversary B

(in the random assignment language with encryption) that runs in polynomial time

p(k), there exists an IND-CPA adversary A such that

Adv
ind-cpa
SE (A) ≥

1

2
·AdvleakSE (B).

Moreover, A runs in O(p(k)) time.

124

Proof. From B, we construct an IND-CPA adversaryA that runs B with a randomly-

chosen 1-bit value of h. Whenever B makes a call E(e) to its encryption primitive,

A passes (0n, e) to its LR oracle and returns the result to B. When B terminates, A

checks whether B has succeeded in leaking h to l; if so, A guesses that it is in World

1; if not, A guesses that it is in World 0. Also, for reasons that will be explained

shortly, A limits B’s execution to p(k) steps, returning 0 if B does not terminate

within that time. Formally, A is defined as:

Adversary AEK(LR(·,·,b))

h0
?
← {0, 1};

h := h0;

initialize all other variables of B to 0;

run BEK (LR(0n,·,b)) for at most p(k) steps;

if B did not terminate then return 0;

if l = h0 then return 1 else return 0

Cryptanalysis, World 1: first note that A runs in O(p(k)) time; if A is in World

1, then B is run faithfully—each encryption E(e) is converted to EK(LR(0
n, e, 1)),

which returns EK(e). Also p(k) steps are enough for B to terminate, by assumption.

Hence A returns 1 precisely if B succeeds in its leaking experiment. Hence

Pr[Exp
ind-cpa-1
SE (A) = 1] = Pr[ExpleakSE (B) = 1]

= 1
2 ·AdvleakSE (B) + 1

2

World 0: if A is in World 0, B is not run faithfully—each encryption E(e) is

converted to EK(LR(0n, e, 0)), which returns EK(0n). This has nothing to do with

e—it just returns a 2n-bit value from some fixed probability distribution (depending

only on K). So in this case, B is actually run as BEK(0n), a well-typed program in the

random assignment language of Chapter 5; but now we have to deal with information

125

leaks due to nontermination, i.e., BEK(0n) might now run forever or at least longer

than polynomial time. For example: B might call E(0n) and E(1n) and test whether

the two ciphertexts are equal. In BEK(·), the test would certainly be false, but in

BEK(0n), it would be true with a small nonzero probability3; a new execution path

is created by the change to World 0 which can allow nontermination. So as much

as we would like to, it is not possible to claim that the language in World 0 has

probabilistic noninterference; if it was so, then

Pr[Exp
ind-cpa-0
SE (A) = 1] = 1

2

However, recalling Theorem 6.0.12, we argue that the probability above is upper

bounded by 1
2
; the intuition here is that whenever B loops, A knows that it is in

World 0 and using this information, A may be less likely to guess World 1.

Let µ0 and µ1 be identical memories except that µ0[h] = 0 and µ1[h] = 1. Let

upwards closed sets T0 = {(done, ν)|ν[l] = 0} and T1 = {(done, ν)|ν[l] = 1}; these

sets contain the terminal configurations for when BEK(0n) guesses 0 or 1 respectively.

Note that A guesses World 1 precisely when running BEK (0n) on memory µ0 reaches

T0 within p(k) steps or when running BEK (0n) on memory µ1 reaches T1 within p(k)

steps. Let p0 be the probability of (BEK(0n), µ0) reaching T0 within p(k) steps and

let p1 be the probability of (BEK (0n), µ1) reaching T1 within p(k) steps.

Now, since ⌊(BEK (0n), µ0)⌋ = ⌊(BEK (0n), µ1)⌋, let p′0 and p′1 be the probabilities of

reaching T0 and T1 (within p(k) steps) respectively from the stripped initial config-

uration. Note that p′0 + p′1 ≤ 1. Then, by Theorem 6.0.8 (Reachability)

Pr((BEK (0n), µ0), p(k), T0) ≤ Pr((⌊BEK (0n)⌋, ⌊µ0⌋), p(k), T0)

which implies that p0 ≤ p′0 and

Pr((BEK (0n), µ1), p(k), T1) ≤ Pr((⌊BEK (0n)⌋, ⌊µ1⌋), p(k), T1)

3Note that this test does not help B leak h.

126

which implies that p1 ≤ p′1. Therefore,

Pr[Exp
ind-cpa-0
SE (A) = 1] = 1

2Pr[(B
EK (0n), µ0)] +

1
2Pr[(B

EK(0n), µ1)]

= 1
2p0 +

1
2p1

≤ 1
2p

′
0 +

1
2p

′
1

≤ 1
2

then, by Definition 6.1.2,

Advind-ccaSE (A) = Pr[Expind-cca-1SE (A) = 1]−

Pr[Expind-cca-0SE (A) = 1].

and substituting above results

Advind-ccaSE (A) ≥ Pr[Expind-cca-1SE (A) = 1]− 1
2

≥ 1
2 ·AdvleakSE (B) + 1

2 −
1
2

≥ 1
2 ·AdvleakSE (B).

Corollary 6.2.3 If SE is IND-CPA secure, then there is no polynomial-time, well-

typed leaking adversary B that achieves a non-negligible advantage.

Proof. Given such a B with non-negligible leaking advantage s(k), then by Theo-

rem 6.2.2 there exists polynomial-time A with IND-CPA advantage s(k)/2, contra-

dicting the IND-CPA security of SE .

Computational probabilistic noninterference: Our final result for this language

and type system is to establish the standard computational probabilistic noninter-

ference property [BP02]. We argue that after running a well-typed program c under

two memories (µ and ν) with different H values, there is no polynomial time pro-

gram N that inputs the final L values of c and can distinguish with a significant

127

probability the execution using the first memory from the execution using the second

memory; we argue this by reduction.

Let µ and ν be L-equivalent memories and let c be a well-typed command in our

language and type system with encryption. Let N be a noninterference adversary

which does not refer to H variables and generates a guess (0 or 1) into the new

variable g; N ’s purpose is to examine the final low memory after the execution of

well-typed program c and to generate a guess as to which initial memory (µ or ν)

was used; N is executed in the following experiment, where h0 is a new variable:

Experiment ExpNISE,c,µ,ν(N)

K
?
← K;

h0
?
← {0, 1};

if h0 = 0 then initialize the variables of c to µ

else initialize the variables of c to ν;

c; N ;

if g = h0 then return 1 else return 0

Next formalizing N ’s effectiveness: the noninterference advantage of N is defined

as

AdvNISE,c,µ,ν(N) = 2 · Pr[ExpNISE,c,µ,ν(N) = 1]− 1.

again, this is becauseN can guess correctly which memory was used with probability

1
2
and soN ’s effectiveness corresponds to guessing correctly with probability ranging

from 1
2
to 1. We are ready to argue that if N is able to effectively guess which initial

memory was used then we can construct a well-typed leaking adversary B that is

similarly effective.

128

Theorem 6.2.4 If c is a well-typed, polynomial-time program and µ and ν are two

L-equivalent memories, then no polynomial-time noninterference adversary N for

c, µ, and ν can achieve a significant noninterference advantage.

Proof. Assuming that such a noninterference adversary N exists, we can build a

leaking adversary B which uses two new variables h and l, of type H and L, respec-

tively. B is defined as follows:

Adversary B

initialize the L variables of c according to µ and ν;

if h = 0 then initialize the H variables of c according to µ

bidelse initialize the H variables of c according to ν;

c; N ;

l := g

Note that B runs in polynomial time. We argue that B is well-typed and that B’s

leaking advantage is the same as N ’s. The initialization code is well-typed under

rules updatet and if t. (this would not be true if µ and ν were not L-equivalent,

because then the initialization of the L variables of c would depend on h.) Next,

c is well-typed by hypothesis but N looks like a regular program. We can argue

that N is well-typed. This does not follow by hypothesis—N should be thought of

as a passive adversary, which cannot be assumed to be well-typed. But because N

cannot refer to the H variables of c, we can give all of its variables type L, which

makes it automatically well-typed under our rules. Finally, the leaking advantage of

B is non-negligible, because it is the same as the noninterference advantage of N .

This contradicts Corollary 6.2.3.

129

6.3 A Language With Encryption and Decryption

We now argue that further extending our language and type system with a decryp-

tion primitive and with the rule decrypt t is sound. Our decryption primitive D(e1, e2)

decrypts under the implicit key K just like the language’s encryption command and

since E takes an n-bit plaintext to a 2n-bit ciphertext, then our decryption primitive

D shall take two n-bit expressions as input (one expression for each of the n bits

blocks of a ciphertext) and return an n-bit plaintext. Since decryption is determin-

istic, we can model it simply as a new expression and add it to our language syntax

in Figure 6.1. Here is the typing rule for decryption, which we add to the rules in

Figure 6.3:

(decrypt t) Γ ⊢ e1 : H

Γ ⊢ e2 : H

Γ ⊢ D(e1, e2) : H

Notice that, because of subtyping, e1 and e2 can be either L or H . But, whatever

they are, D(e1, e2) is always H . With our extended language, we use exactly the

same definition of leaking adversary B as before, except that the adversary can now

perform decryption, B is executed in the following experiment:

Experiment ExpleakSE (B)

K
?
← K;

h0
?
← {0, 1};

h := h0;

initialize all other variables of B to 0;

run BEK (·),DK(·,·);

if l = h0 then return 1 else return 0

130

and has the same advantage as the previous version:

AdvleakSE (B) = 2 · Pr[ExpleakSE (B) = 1]− 1.

Intuitively, it does not seem that decryption should help a leaking adversary, since

a decryption always has type H . However, we have so far been unable to adapt

the proof of Theorem 6.2.2 to deal with decryption. But we are able to prove an

analogous theorem in the case where the symmetric encryption scheme SE satisfies

a stronger security property, namely IND-CCA security (indistinguishability under

chosen-ciphertext attack [BR05]). We now show that our type system with both

encryption and decryption is sound, assuming that SE is IND-CCA secure.

Theorem 6.3.1 (IND-CCA Reduction) Given adversary B as above, there ex-

ists IND-CCA adversary A such that

Advind-ccaSE (A) ≥
1

2
·AdvleakSE (B).

Moreover, A runs about as quickly as B.

Proof. The proof is quite similar to that of Theorem 6.2.2. Given leaking adversary

B, we construct an IND-CCA adversary A that runs B with a randomly-chosen 1-bit

value of h, for at most p(k) steps, As before, whenever B makes a call E(m) to its

encryption primitive, A passes (0n, m) to its LR oracle and returns the result, which

is a two-block ciphertext (c1, c2), to B. But A also remembers ((c1, c2), m) in a hash

table. Whenever B makes a call D(c1, c2) to its decryption primitive, A first checks

whether (c1, c2) is in the hash table. If so, it returns the corresponding plaintext m

to B. If not, it answers the query using its decryption oracle DK(·). As before, A

guesses that it is in World 1 if B terminates within p(k) steps and successfully leaks

h; if not, then A guesses that it is in World 0.

131

Note that although there will be some cost associated with maintaining the hash

table, A still runs about as quickly as B. Also note that A never “cheats” by calling

its decryption oracle on a ciphertext previously returned by its LR-oracle.

As before, when A is in World 1, it runs B faithfully. And when A is in World

0, it runs B as a program in the random assignment language of Chapter 5. (Note

that the decryption primitive D can be viewed as an ordinary operation like +,

since its typing rule conforms to the Simple Security lemma.) As before, we cannot

claim probabilistic noninterference on the random assignment language because of

nontermination; instead we use the Bucket property to bound B’s probability of

terminating and leaking h to l. The calculation of Advind-ccaSE (A) follows as before.

Finally, Using Theorem 6.3.1, we can obtain results analogous to Corollary 6.2.3

and Theorem 6.2.4, using exactly the same arguments; hence, we establish computa-

tional probabilistic noninterference on the language with encryption and decryption

primitives.

In this chapter we have extended the probabilistic language of Chapter 5 with

encryption and decryption primitives. We have kept the same non-restrictive type

system as in all the other work and have shown that the intuition that the result

of encryption can be public, is sound. Finally we have shown a computational

noninterference property on our language and type systems for IND-CPA and IND-

CCA secure schemes.

132

CHAPTER 7

CONCLUSION AND FUTURE WORK.

In this thesis we set out to address the feasibility of a practical secure language.

We proposed the following success criteria:

- the work should present successful implementations of languages with features

that are representative of commercial languages; it should include at a mini-

mum: probabilistic commands, concurrency, and cryptographic primitives.

- a single theory should handle the establishment of the security properties of

all the languages.

- the languages should be simple and elegant, the programmer should not have

to learn complex syntax or semantics and the type system should not restrict

the programmer too unreasonably. At a minimum, the guards of if and while

commands should not be restricted to public.

We have met this criteria by the introduction of a new powerful technique for proving

noninterference on languages that were not previously provable under bisimulation,

the presentation of four elegant languages that are only limited by the Denning

Restrictions, and the use of a single theory for their proof of soundness.

Research in the area of secure information flow is motivated by the need for

programs that can handle sensitive information with the assurance that it will not

be leaked to unauthorized parties. Yet, it is not yet clear how feasible it would be to

develop a practical language with a strong security property like noninterference, or

whether the language could be used to develop “real” applications. There is also no

guarantee of complete security through applying secure information flow techniques,

just the elimination of a class of information leaks.

133

For example, in a distributed language, an eavesdropper could presumably sense

the time when information is transmitted, introducing the possibility of external

timing channels. Such channels are notoriously difficult to prevent. However, there

are effective countermeasures such as the techniques input blinding [Koc96] and

bucketing [KD09], and more traditionally, the NRL Pump [KM93b] which can limit

the effectiveness of timing attacks.

Therefore, we also conclude that currently there is no major impediment in the

creation of such languages. To support this, in this work we have shown several

languages which exemplify aspects of some of the key features of a typical general-

purpose language; this adds to existing work in secure implementation of other

aspects of such a language; for example, [DS04] explores a secure implementation of

arrays.

Correctness. One issue that should be addressed is the correctness of theorems

in this work and in future work involving complex languages. The theory in this

thesis was published in four peer-reviewed publications and the proofs are elegant

and can be followed carefully. Also, the findings are not incongruent with related

work.

However, as we move to the implementation of practical languages the proofs

are likely to become extremely tedious and long, making them impregnable. The

principal problem with this is the introduction of errors which would not be found

easily. A solution to this problem is the introduction of automatic proving tools to

verify the theory. A variety of such tools are now available for use and have become

part of university curricula. For example, Benjamin Pierce [Pie08] has incorporated

Coq at U-Penn for the Foundations of Programming Languages course.

Coq, was developed at INRIA et al [The04] and creates an environment where

theorems can be specified and their proofs can be verified. To do this, one first

134

fully describes the theory using the tool’s formal language; this language is similar

to that used in functional languages like Haskell and F#. Next, a theorem can be

specified and, finally, the proof of the theorem is done; usually, this is an easier part

of the process. Proofs are simply done via a succession of claimed properties which

are verified by the tool.

It is likely that practical applications commissioned by non-academic organiza-

tions would require some sort of automatic verification of the properties of systems

being developed. Also, proving tools can provide an insight into the theory being

developed since this is done within the formal environment provided by the tool;

hence, design errors can be found and corrected immediately.

Future work. One situation that seems promising is an implementation of Chap-

ter 4 in a concrete setting over a public network. Section 4.4 sketches this work but

without a proof of soundness.

Another interesting result would be to extend the cryptographic language of

Chapter 6 to a richer language, for example with public-key encryption, and to

carry out case studies to explore the usefulness of the language and type system

in developing realistic applications with provable security properties. It would be

interesting to determine whether IND-CCA secure encryption is really necessary

for the soundness of the cryptographic language. It appears possible to construct

pathological IND-CPA secure encryption schemes that allow well-typed programs

that use both encryption and decryption to leak H variables, but it is unclear

whether “real” IND-CPA secure schemes would allow similar attacks.

Finally, a main goal of secure information flow is to enable practical secure

applications. A practical language guaranteeing a noninterference property would

not be for everybody, nor for regular applications. The complexity and subtlety

of modern systems makes the detection of “leaking code” hard (in the rare case

135

where the code is available to inspect). In secure information flow analysis, code

inspection (at least by a human) would not be necessary to certify the security

property of a program. This is because the certifying authority would only need to

compile the program under the secure language exposing the security lattice with

the certificate. This, of course, would require a certificate authority as well as tools

for verification of programs. But to have a “real” secure information flow system

we would need to address many other practical problems. For example, it seems

unlikely that one security lattice would be able to be fixed for any real project. This

could be addressed by allowing multiple security lattices so that each module could

have its own. Then, if the language semantics and type system are well set, we could

separate the lattice from the language, allowing for a certification of programs with

respect to a security lattice. Under this model we would still have to work out the

relations between elements of the lattices and the interfaces between programs with

different lattices.

Even after the language is specified and an operational scope is set to put bound-

aries on the type of programs that would be created, a development environment

would be needed and programmers would need to learn the new environment; the

security lattices would have to be designed and related and users would need to

know the proper classification of data. This is a daunting and expensive proposi-

tion, yet, there are environments where this kind of security is needed. National

security, banking and medicine seem to be the prime candidates as the confidential-

ity of the information in these industries is valued. Selecting a workable scope for

implementing secure information flow within our national security would seem more

feasible given that there has been extensive security classification work in this area

and that the security latices seems more tractable. This is in contrast with a lattice

for a medical system where who is able to inspect a patient’s medical data depends

136

on the patient and on the institution. A banking or medical model would probably

be composed of a federated set of entities with a central certifying authority which

would assert the absence of leaks with respect to a security lattice.

The current approach of fixing vulnerabilities as they are found seems inad-

equate for some applications. When a system cannot afford careless or devious

programming, secure information flow may provide a solution that maintains the

confidentiality of data from inception.

137

NOMENCLATURE

Γ. In type systems for secure information flow, Γ is a partial function that maps

variables to their security classification. Section 3.2, pg. 25.

Aura. Aura is a language for secure information flow that maintains confidentiality

and integrity properties of its constructs as specified by their labels. During

execution data is “packed” according to its label using asymmetric encryp-

tion. Section 2.1, pg. 14.

bisimulation. Bisimulation is an equivalence relation where two transitioning sys-

tems behave indistinguishably with respect to a formal observer. Section 5.2,

pg. 87.

bucket property. Given a program for secure information flow and its stripped ver-

sion, if running the program can reach a number of final configurations, each

with some probability greater than zero or can result in nontermination with

some other probability, the bucket property says that the final probabilities

of the stripped program can only grow and this growth can only come from

the looping probability of the original program. Section 5, pg. 77.

ciphertexts. In cryptography, a ciphertext is a bit-string that is the result of an

encryption operation. Section 2.1, pg. 14.

cryptography. Cryptography is the study of algorithms to embed information in

bit-strings so that it is hard to discover and recover the information for unau-

thorized parties. Section 2.1, pg. 11.

Denning restrictions. The Denning restrictions are a set of restrictions to prevent

the leaking of information during the executions of programs. Section 2.1,

pg. 9.

138

Dolev-Yao. Dolev-Yao is a formal model to reason about the behavior of crypto-

graphic protocols. The essence of Dolev-Yao is that encrypting an object

with a key produces another object that is not inspectable and can only be

decrypted if one has the encryption key. Also, the network in the Dolev-Yao

model is hostile in that attackers control message delivery being able to drop,

substitute, or initiate messages at will. Section 2.2, pg. 17.

Encryption Oracle. In the context of cryptography, an LR-encryption oracle is a

pair of probabilistic functions [MRST06] of which only one is used, but it is

not known which. Also, the probability distribution of the functions is not

known. Given such an oracle, our ability to determine which function it uses

is related to the effectiveness of the encryption scheme. Section 6.1, pg. 117.

fast low simulation. A fast low simulation is a fast simulation that maintains low

equivalence of memories. Section 3.5.2, pg. 43.

fast simulation. Intuitively, fast simulation is a binary relation on a transition sys-

tem such that if R is a fast simulation and sRt (where s and t are states of

the transition system), t can match, in zero or one steps, any transition from

s. However there are varying definitions of fast simulation in Chapters 3, 4,

and 5 (Section 3.3, pg. 35; Section 4.3.3, pg. 65; Section 5.2.4, pg. 89).

IND-CCA security. IND-CCA stands for Indistinguishability Under Chosen Cipher-

text Attack. Similarly to IND-CPA security, an adversary is provided with an

encryption oracle, but now the adversary also has a decryption oracle. The

encryption oracle works just like in IND-CPA security. The decryption oracle

decrypts ciphertexts but the adversary is not allowed to decrypt a ciphertext

that has been generated with the encryption oracle. The adversary then tries

to guess which message the oracle is encrypting. The encryption scheme is

139

secure if there is no adversary that can guess the oracle with a significant

probability and in polynomial time. Section 6.1, pg. 118.

IND-CPA security. IND-CPA stands for Indistinguishability Under Chosen Plain-

text Attack. IND-CPA security is a property of encryption schemes where

no adversary is capable of distinguishing any two ciphertexts that are gen-

erated by the encryption algorithm unless the adversary has the encryption

key. More precisely, an adversary is provided with an encryption oracle that

is given two messages and always encrypts one or the other, but we don’t

know which. The adversary then, tries to guess which message the oracle

is encrypting. The encryption scheme is secure if there is no adversary that

can guess the oracle with a significant probability and in polynomial time.

Section 6.1, pg. 117.

Jif. Jif is a practical language for secure information flow that can include infor-

mation flow and access control policies. For example, the language supports

labels such as

int {Alice→ Bob} x;

which means that x is owned by Alice and she allows Bob to read it. Sec-

tion 2.1, pg. 14.

lumpability. In Markov chains, lumpability is a property where sets of states can

be grouped together, thereby reducing the state space without affecting its

operations. States within the lumped sets are equivalent in some manner.

Section 2.1, pg. 12.

Markov chain. A Discrete Time Markov Chain (DTMC) is a pair composed of a

countable set of states and a probability matrix (with the transition proba-

bilities from any state to any other state). The probability matrix must have

140

the property that for any state the sum of all the transition probabilities (the

sum of any row of the matrix) must be 1. Section 2.1, pg. 12.

Needham-Schroeder-Lowe protocol. The Needham-Schroeder-Lowe protocol is a cryp-

tographic protocol for secure communications; it is defined as follows:

A→ B : {NA, A}pkB

B → A : {NA, , NB, B}pkA

A→ B : {NB}pkB

where A and B are parties, N is a fresh nonce, and pkA is the public key of

A. In the protocol A sends B a fresh nonce and a self-identification encrypted

using B’s public key. Then, B replies with A’s nonce, its own fresh nonce, and

its own self-identification encrypted using A’s public key. Finally, A replies

by returning B’s nonce. Section 4.4, pg. 73.

noninterference. Noninterference is a formal property of a system that guarantees

the absence of information leaks within an execution model. Section 2.1,

pg. 9.

observational determinism. Observational determinism is a property of type systems

such that multiple execution yield the same result for a formal observer.

Section 2.2, pg. 16.

plaintext. In cryptography, a plaintext is a message, a bit-string. Section 6, pg. 108.

reachability property. The essence of the reachability property is that if a state

simulates another the simulating state must reach its destination in less steps

then the simulated state. For this work we require that the simulating state

reaches at least as fast as the simulated state; although this is not strictly

necessary for all our results, it is required for some. Section 3.3.5, pg. 38.

141

RSA. RSA is an encryption scheme invented by Ron Rivest, Adi Shamir, and

Leonard Adleman and is the basis for public key cryptography. Section 2.1,

pg. 12.

Secure Information Flow. Secure Information Flow is an area of research in com-

puter security that emphasizes the maintaining of confidentiality and integrity

of information as it is processed by a computing machine. Section 2.1, pg. 8.

security lattice. A security lattice is a lattice that models the relation between the

security types of the objects in a security policy. A lattice is a partially

ordered set with least upper bound and greatest lower bound for all pair of

elements. Section 2.1, pg. 8.

security policy. A security policy is a set of objects, definitions, and rules that re-

strict the access of information for a system. Section 2.1, pg. 10.

Shannon entropy. Suppose a random variable has a certain number of outcomes

each with some probability. You are tasked with encoding these outcomes

using bit strings so that the generation of values from the random variable

produces on average the least number of bits. The Shannon entropy is the

lower bound for this. It is the expected value of the log2 of the probability of

the outcomes in non-increasing order. Entropy in general has wide application

and intuitions. Section 2.1, pg. 11.

simulation. A simulation relation is a preorder (reflexive and transitive) on a set

of states such that if state s is simulates by t (sR t) then t can match all

transitions of s. Section 5.2, pg. 87.

stripping. The stripping function is a function that when applied to a program

removes all subcommands that do not assign to low variables; when applied

142

to a memory it removes all the high variables. The stripping function is

denoted as ⌊·⌋ when used as a relation. Section 2.2, pg. 15.

symmetric encryption scheme. A symmetric encryption scheme is a triple of algo-

rithms: one for the generation of keys, one for the randomized encryption of

messages using a key, and one for the deterministic decryption of ciphertexts

using a key. Section 6.1.1, pg. 117.

termination-insensitive noninterference. Termination-insensitive noninterference is

a variant of the noninterference property that only applies to executions that

terminate. Section 3.5, pg. 42.

transition system. A transition system is a pair composed of a set of states and a

transition relation. Section 3.3.1, pg. 36.

type system. A type system is an aspect of a system composed of objects, types,

and inference rules that can be used to reason about the behavior of the

complete system. Section 2.1, pg. 8.

upwards closed set. Within this work, an upwards closed set is a set that includes

all the simulating states of all the states in itself. Section 3.3.4, pg. 38.

143

BIBLIOGRAPHY

[ACF06] M. Abadi, R.J. Corin, and C. Fournet. Computational secrecy by typing
for the pi calculus. In N. Kobayashi, editor, Fourth Asian Symposium on
Programming Languages and Systems (APLAS 2006), volume 4279 of
Lecture Notes in Computer Science, pages 253–269, London, November
2006. Springer Verlag.

[AFG98] M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of
channel abstractions. In LICS ’98: Proceedings of the 13th Annual IEEE
Symposium on Logic in Computer Science, page 105, Washington, DC,
USA, 1998. IEEE Computer Society.

[Aga00] Johan Agat. Transforming out timing leaks. In POPL, pages 40–53,
Boston, MA, January 2000.

[AHS06] Aslan Askarov, Daniel Hedin, and Andrei Sabelfeld. Cryptographically-
masked flows. In Proceedings of the 13th International Static Analysis
Symposium, pages 353–369, Seoul, Korea, 2006.

[AHSS08] Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands.
Termination-insensitive noninterference leaks more than just a bit. In
ESORICS, pages 333–348, 2008.

[AR00] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptog-
raphy (The computational soundness of formal encryption). In TCS
’00: Proceedings of the IFIP International Conference on Theoretical
Computer Science, pages 3–22, August 2000.

[AS09] Rafael Alṕızar and Geoffrey Smith. Secure information flow for dis-
tributed systems. In Proc. Formal Aspects of Security and Trust (FAST
2009), Eindhoven, Netherlands, November 2009.

[BB05] David Brumley and Dan Boneh. Remote timing attacks are practical.
Comput. Netw., 48:701–716, August 2005.

[BDJR97] M. Bellare, E. Desai, E. Jokipii, and P. Rogaway. A concrete security
treatment of symmetric encryption: Analysis of DES modes of opera-
tion. In Proceedings of the 38th Symposium on Foundations of Computer
Science, 1997.

144

[BKHW05] Christel Baier, Joost-Pieter Katoen, Holger Hermanns, and Verena
Wolf. Comparative branching-time semantics for Markov chains. In-
formation and Computation, 200(2):149–214, 2005.

[BP02] Michael Backes and Birgit Pfitzmann. Computational probabilistic non-
interference. In Proceeding 7th ESORICS, pages 1–23, 2002.

[BP05] Michael Backes and Birgit Pfitzmann. Relating symbolic and crypto-
graphic secrecy. In Proceeding 26th IEEE Symposium on Security and
Privacy, Oakland, California, 2005.

[BR05] Mihir Bellare and Phillip Rogaway. Introduction to modern cryptogra-
phy. In UCSD CSE 207 Course Notes, page 207, 2005.

[CHM02] David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantitative
analysis of the leakage of confidential data. Electronic Notes in Theo-
retical Computer Science, 59(3), 2002.

[Coh77] Ellis S. Cohen. Information transmission in computational systems. In
SOSP, pages 133–139, 1977.

[DD77] Dorothy Denning and Peter Denning. Certification of programs for
secure information flow. Communications of the ACM, 20(7):504–513,
1977.

[Den75] Dorothy Denning. Secure Information Flow in Computer Systems. PhD
thesis, Purdue University, West Lafayette, IN, May 1975.

[DPHW02] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Approx-
imate non-interference. In Proceedings15thIEEE Computer Security
Foundations Workshop, pages 1–17, Cape Breton, Nova Scotia, Canada,
June 2002.

[DS04] Zhenyue Deng and Geoffrey Smith. Lenient array operations for practi-
cal secure information flow. In Proceedings17thIEEE Computer Security
Foundations Workshop, pages 115–124, Pacific Grove, California, June
2004.

[DY83] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

145

[FC08] Riccardo Focardi and Matteo Centenaro. Information flow security of
multi-threaded distributed programs. In PLAS ’08: Proceedings of the
Third ACM SIGPLAN Workshop on Programming Languages and Anal-
ysis for Security, pages 113–124, New York, NY, USA, 2008. ACM.

[Fel68] William Feller. An Introduction to Probability Theory and Its Applica-
tions, volume I. John Wiley & Sons, Inc., Third edition, 1968.

[FR08] Cédric Fournet and Tamara Rezk. Cryptographically sound im-
plementations for typed information-flow security. In Proceed-
ings35thSymposium on Principles of Programming Languages, San
Francisco, California, January 2008.

[GM82] Joseph Goguen and José Meseguer. Security policies and security mod-
els. In Proceedings1982IEEE Symposium on Security and Privacy, pages
11–20, Oakland, CA, 1982.

[Gra90] James W. Gray, III. Probabilistic interference. In Proceedings1990IEEE
Symposium on Security and Privacy, pages 170–179, Oakland, CA, May
1990.

[JL91] Bengt Jonsson and Kim Larsen. Specification and refinement of proba-
bilistic processes. In Proc. 6th IEEE Symposium on Logic in Computer
Science, pages 266–277, 1991.

[JVM+08] Limin Jia, Jeffrey A. Vaughan, Karl Mazurak, Jianzhou Zhao, Luke
Zarko, Joseph Schorr, and Steve Zdancewic. Aura: a programming
language for authorization and audit. In Proceeding of the 13th ACM
SIGPLAN international conference on Functional programming, ICFP
’08, pages 27–38, New York, NY, USA, 2008. ACM.

[KD09] Boris Köpf and Markus Dürmuth. A Provably Secure and Efficient
Countermeasure against Timing Attacks. In Proc. 22nd IEEE Computer
Security Foundations Symposium (CSF ’09), pages 324–335. IEEE,
2009.

[KM93a] Myong H. Kang and Ira S. Moskowitz. A pump for rapid, reliable, secure
communication. In CCS ’93: Proceedings of the 1st ACM Conference
on Computer and Communications Security, pages 119–129, New York,
NY, USA, 1993. ACM.

146

[KM93b] Myong H. Kang and Ira S. Moskowitz. A pump for rapid, reliable
secure communication. In Proceedings of the 1st ACM Conference on
Computer & Communications Security, pages 119–129, November 1993.

[KMC05] Myong H. Kang, Ira S. Moskowitz, and Stanley Chincheck. The pump:
A decade of covert fun. In 21st Annual Computer Security Applications
Conference (ACSAC 2005), 5-9 December 2005, Tucson, AZ, USA,
pages 352–360. IEEE Computer Society, 2005.

[Koc96] P. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS and other systems. In Proceedings 16th Annual Crypto Conference,
August 1996.

[KS60] John Kemeny and J. Laurie Snell. Finite Markov Chains. D. Van
Nostrand, 1960.

[KS10] Boris Köpf and Geoffrey Smith. Vulnerability bounds and leakage re-
silience of blinded cryptography under timing attacks. In CSF, pages
44–56, 2010.

[Lau01] Peeter Laud. Semantics and program analysis of computationally secure
information flow. In Proceedings 10th ESOP (European Symposium on
Programming, pages 77–91, 2001.

[Lau02] Peeter Laud. Encryption cycles and two views of cryptography. In In
NORDSEC 2002 - Proceedings of the 7th Nordic Workshop on Secure
IT Systems (Karlstad University Studies 2002:31, pages 85–100, 2002.

[Lau03] Peeter Laud. Handling encryption in an analysis for secure information
flow. In Proceedings 12th ESOP (European Symposium on Program-
ming, pages 159–173, 2003.

[Lau05] Peeter Laud. Secrecy types for a simulatable cryptographic library. In
Proceedings 12th CCS (ACM Conference on Computer and Communi-
cations Security), pages 26–35, 2005.

[Lau08] Peeter Laud. On the computational soundness of cryptographically
masked flows. In Proceedings35thSymposium on Principles of Program-
ming Languages, San Francisco, California, January 2008.

[LS91] Kim G. Larsen and Arne Skou. Bisimulation through probabilistic test-
ing. Information and Computation, 94(1):1–28, 1991.

147

[LV05] Peeter Laud and Varmo Vene. A type system for computationally secure
information flow. In Proceedings of the 15th International Symposium on
Fundamentals of Computational Theory, volume 3623 of Lecture Notes
in Computer Science, pages 365–377, Lübeck, Germany, 2005.

[LZ05] Peng Li and Steve Zdancewic. Downgrading policies and relaxed non-
interference. In Proceedings32ndSymposium on Principles of Program-
ming Languages, pages 158–170, January 2005.

[Mal07] Pasquale Malacaria. Assessing security threats of looping constructs. In
Proceedings34thSymposium on Principles of Programming Languages,
pages 225–235, Nice, France, January 2007.

[McL90] John McLean. Security models and information flow. In Proceed-
ings1990IEEE Symposium on Security and Privacy, pages 180–187,
Oakland, CA, 1990.

[MCN+06] Andrew C. Myers, Stephen Chong, Nathaniel Nystrom, Lantian Zheng,
and Steve Zdancewic. Jif: Java + information flow. Cornell University,
2006. Available at http://www.cs.cornell.edu/jif/.

[Mil71] Robin Milner. An algebraic definition of simulation between programs.
In IJCAI’71: Proceedings of the 2nd international joint conference on
Artificial intelligence, pages 481–489, San Francisco, CA, USA, 1971.
Morgan Kaufmann Publishers Inc.

[Mil82] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1982.

[MRST06] John C. Mitchell, Ajith Ramanathan, Andre Scedrov, and Vanessa
Teague. A probabilistic polynomial-time process calculus for the analy-
sis of cryptographic protocols. Theor. Comput. Sci., 353:118–164, March
2006.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press,
2002.

[Pie08] Benjamin C. Pierce. Using a proof assistant to teach programming
language foundations, or, Lambda, the ultimate TA, April 2008. White
paper.

148

[SA06] Geoffrey Smith and Rafael Alṕızar. Secure information flow with ran-
dom assignment and encryption. In Proc. 4th ACM Workshop on For-
mal Methods in Security Engineering, pages 33–43, Fairfax, Virginia,
November 2006.

[SA07] Geoffrey Smith and Rafael Alṕızar. Fast probabilistic simulation, non-
termination, and secure information flow. In Proc. 2007 ACM SIG-
PLAN Workshop on Programming Languages and Analysis for Security,
pages 67–71, San Diego, California, June 2007.

[SA11] Geoffrey Smith and Rafael Alṕızar. Nontermination and secure infor-
mation flow. Mathematical Structures in Computer Science, 2011.

[SAIL08] Alan B. Shaffer, Mikhail Auguston, Cynthia E. Irvine, and Timothy E.
Levin. A security domain model to assess software for exploitable covert
channels. In Úlfar Erlingsson and Marco Pistoia, editors, PLAS, pages
45–56. ACM, 2008.

[San09] Davide Sangiorgi. On the origins of bisimulation and coinduction. ACM
Trans. Program. Lang. Syst., 31(4):1–41, 2009.

[SM03] Andrei Sabelfeld and Andrew C. Myers. Language-based information
flow security. IEEE Journal on Selected Areas in Communications,
21(1):5–19, January 2003.

[Smi01] Geoffrey Smith. A new type system for secure information flow. In
Proceedings14thIEEE Computer Security Foundations Workshop, pages
115–125, Cape Breton, Nova Scotia, Canada, June 2001.

[Smi03] Geoffrey Smith. Probabilistic noninterference through weak probabilis-
tic bisimulation. In Proceedings16thIEEE Computer Security Founda-
tions Workshop, pages 3–13, Pacific Grove, California, June 2003.

[Smi06] Geoffrey Smith. Improved typings for probabilistic noninterference in a
multi-threaded language. Journal of Computer Security, 14(6):591–623,
2006.

[Smi07] Geoffrey Smith. Principles of secure information flow analysis. In Mal-
ware Detection, pages 297–307. Springer-Verlag, 2007.

[Smi08] Geoffrey Smith. Adversaries and information leaks. In Gilles Barthe
and Cédric Fournet, editors, TGC 2007 (Trustworthy Global Comput-

149

ing), volume 4912 of Lecture Notes in Computer Science, pages 383–400.
Springer-Verlag, 2008.

[Smi09] Geoffrey Smith. On the foundations of quantitative information flow. In
Proceedings FoSSaCS 2009: Twelfth International Conference on Foun-
dations of Software Science and Computation Structures, volume 5504
of Lecture Notes in Computer Science, pages 288–302. Springer-Verlag,
2009.

[SS00] Andrei Sabelfeld and David Sands. Probabilistic noninterference for
multi-threaded programs. In Proceedings13thIEEE Computer Security
Foundations Workshop, pages 200–214, Cambridge, UK, July 2000.

[SS05] Andrei Sabelfeld and David Sands. Dimensions and principles of de-
classification. In Proceedings18thIEEE Computer Security Foundations
Workshop, June 2005.

[SV98] Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-
threaded imperative language. In Proceedings25thSymposium on Prin-
ciples of Programming Languages, pages 355–364, San Diego, CA, Jan-
uary 1998.

[SW06] Vitaly Shmatikov and Ming-Hsiu Wang. Measuring relationship
anonymity in mix networks. In WPES ’06: Proceedings of the 5th ACM
workshop on Privacy in Electronic Society, pages 59–62, 2006.

[The04] The Coq Development Team. The Coq Proof Assistant Reference Man-
ual – Version V8.0, April 2004.

[THV04] Gergely Tóth, Zoltán Hornák, and Ferenc Vajda. Measuring anonymity
revisited. In S. Liimatainen and T. Virtanen, editors, Proceedings of
the Ninth Nordic Workshop on Secure IT Systems, pages 85–90, Espoo,
Finland, 2004.

[Vol00] Dennis Volpano. Secure introduction of one-way functions. In Proceed-
ings13thIEEE Computer Security Foundations Workshop, pages 246–
254, Cambridge, UK, June 2000.

[VS97] Dennis Volpano and Geoffrey Smith. Eliminating covert flows with min-
imum typings. In Proceedings10thIEEE Computer Security Foundations
Workshop, pages 156–168, June 1997.

150

[VS99] Dennis Volpano and Geoffrey Smith. Probabilistic noninterference in
a concurrent language. Journal of Computer Security, 7(2,3):231–253,
1999.

[VSI96] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type sys-
tem for secure flow analysis. Journal of Computer Security, 4(2,3):167–
187, 1996.

[War03] Bogdan Warinschi. A computational analysis of the Needham-
Schroeder-(Lowe) protocol. In Proceedings16thIEEE Computer Security
Foundations Workshop, pages 248–262, Pacific Grove, California, June
2003.

[ZM03] Steve Zdancewic and Andrew C. Myers. Observational determinism
for concurrent program security. In Proceedings16thIEEE Computer
Security Foundations Workshop, pages 29–43, Pacific Grove, California,
June 2003.

[ZM08] Lantian Zheng and Andrew C. Myers. Securing nonintrusive web en-
cryption through information flow. In PLAS ’08: Proceedings of the
third ACM SIGPLAN Workshop on Programming Languages and Anal-
ysis for Security, pages 125–134, New York, NY, USA, 2008. ACM.

151

VITA

RAFAEL ALPIZAR

August 4, 1961 Born, Santiago, Cuba

1984 B.S., Electrical Engineering
University of Miami
Coral Gables, Florida

1986 M.S., Computer Science
George Washington University
Washington D.C.

1992 15 Cr. towards MSEE
Catholic University
Washington D.C.

Press: Ph.D. Candidate Computer Science
Florida International University
Miami FL.

1984–1990 Electronic Engineer
David Taylor Research Center
Bethesda, Maryland

1990–1995 Programmer & Systems Analyst
Dade County DERM
Miami, Florida

1995–2000 Chief Information Officer
City of Hialeah
Hialeah, Florida

2000–2003 Academic Chair
Design Technology, MDCC
Miami, Florida

2003–2006 Graduate Assistant
Florida International University
Miami, Florida

2006–Press IT Director
City of Doral
Doral, Florida

152

PUBLICATIONS AND PRESENTATIONS

Smith, G., Alṕızar, R., (2006). Secure Information Flow with Random Assignment
and Encryption. Proc. 4th ACM Workshop on Formal Methods in Security Engi-
neering (FMSE 2006).

Smith, G., Alṕızar, R., (2007). Fast Probabilistic Simulation, Nontermination, and
Secure Information Flow. Proc. 2007 ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security (PLAS 2007).

Presentation, Nov 2009. Secure Information Flow for Distributed Systems. Formal
Aspects of Security and Trust (FAST 2009 Affiliate of FM Week). Technische Uni-
versiteit Eindhoven NL.

Alṕızar, R., Smith, G.,(2009). Secure Information Flow for Distributed Systems.
Formal Aspects of Security and Trust (FAST 2009).

Smith, G., Alṕızar, R., (2011). Nontermination and secure information flow. Math-
ematical Structures in Computer Science (MSCS 2011).

153

	Florida International University
	FIU Digital Commons
	2-28-2011

	Secure Information Flow via Stripping and Fast Simulation
	Rafael H. Alpizar
	Recommended Citation

	Secure Information Flow via Stripping and Fast Simulation

